Publications by authors named "Wanke S"

Background And Aims: Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe.

View Article and Find Full Text PDF

The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented.

View Article and Find Full Text PDF

Five species of the Holarctic genus Schizohelea occurring in Europe and North Africa are reviewed, diagnosed and illustrated. These are S. leucopeza (Meigen, 1804), S.

View Article and Find Full Text PDF

Deceptive flowers, unlike in mutualistic pollination systems, mislead their pollinators by advertising rewards which ultimately are not provided. Although our understanding of deceptive pollination systems increased in recent years, the attractive signals and deceptive strategies in the majority of species remain unknown. This is also true for the genus Aristolochia, famous for its deceptive and fly-pollinated trap flowers.

View Article and Find Full Text PDF

Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality.

View Article and Find Full Text PDF

Premise: Many plastomes of autotrophic Piperales have been reported to date, describing a variety of differences. Most studies focused only on a few species or a single genus, and extensive, comparative analyses have not been done. Here, we reviewed publicly available plastome reconstructions for autotrophic Piperales, reanalyzed publicly available raw data, and provided new sequence data for all previously missing genera.

View Article and Find Full Text PDF

Multichromosomal mitochondrial genome (mitogenome) structures have repeatedly evolved in many lineages of angiosperms. However, the underlying mechanism remains unclear. The mitogenomes of three genera of Balanophoraceae, namely Lophophytum, Ombrophytum, and Rhopalocnemis, have already been sequenced and assembled, all showing a highly multichromosomal structure, albeit with different genome and chromosome sizes.

View Article and Find Full Text PDF

Background: To date, plastid genomes have been published for all but two holoparasitic angiosperm families. However, only a single or a few plastomes represent most of these families. Of the approximately 40 genera of holoparasitic angiosperms, a complete plastid genome sequence is available for only about half.

View Article and Find Full Text PDF

Understanding the spatial and temporal frameworks of species diversification is fundamental in evolutionary biology. Assessing the geographic origin and dispersal history of highly diverse lineages of rapid diversification can be hindered by the lack of appropriately sampled, resolved, and strongly supported phylogenetic contexts. The use of currently available cost-efficient sequencing strategies allows for the generation of a substantial amount of sequence data for dense taxonomic samplings, which together with well-curated geographic information and biogeographic models allow us to formally test the mode and tempo of dispersal events occurring in quick succession.

View Article and Find Full Text PDF

Background: Balanophoraceae plastomes are known for their highly condensed and re-arranged nature alongside the most extreme nucleotide compositional bias known to date, culminating in two independent reconfigurations of their genetic code. Currently, a large portion of the Balanophoraceae diversity remains unexplored, hindering, among others, evolutionary pattern recognition. Here, we explored newly sequenced plastomes of Sarcophyte sanguinea and Thonningia sanguinea.

View Article and Find Full Text PDF

Nowadays, usable plastic materials with defined properties are created by blending additives into the base polymer. This is the main task of compounding on co-rotating twin-screw extruders. The thermal and mechanical stress occurring in the process leads to a mostly irreversible damage to the material.

View Article and Find Full Text PDF

The mitochondrial genome of Liriodendron tulipifera exhibits many ancestral angiosperm features and a remarkably slow evolutionary rate, while mitochondrial genomes of other magnoliids remain yet to be characterized. We assembled nine new mitochondrial genomes, representing all genera of perianth-bearing Piperales, as well as for a member of the sister clade: three complete or nearly complete mitochondrial genomes from Aristolochiaceae and six additional draft assemblies including Thottea, Asaraceae, Lactoridaceae, and Hydnoraceae. For comparative purpose, a complete mitochondrial genome was assembled for Saururus, a member of the perianth-less Piperales.

View Article and Find Full Text PDF

In the context of plastics recycling, plastics are processed several times. With each new melting and extrusion the plastic is damaged, which can have a negative effect on product properties. To counteract material damage, special additives such as chain extenders can be used, which are intended to lead to post-polymerization during processing.

View Article and Find Full Text PDF

Information provided by population genetic studies is often necessary to effectively protect endangered species. In general, such data is scarce for aquatic plants and this holds also for , an aquatic macrophyte endemic to northwestern and western Europe. It is threatened across its whole distribution range due to human influences, in particular due to eutrophication and intensive fish farming.

View Article and Find Full Text PDF

Anchored Hybrid Enrichment (AHE) is a tool for capturing orthologous regions of the nuclear genome shared in low or single copy across lineages. Despite the increasing number of studies using this method, its usefulness to estimate relationships at deeper taxonomic levels in plants has not been fully explored. Here we present a proof of concept about the performance of nuclear loci obtained with AHE to infer phylogenetic relationships and explore the use of gene sampling schemes to estimate divergence times in Asterales.

View Article and Find Full Text PDF

Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.

View Article and Find Full Text PDF

Plastome condensation during adaptation to a heterotrophic lifestyle is generally well understood and lineage-independent models have been derived. However, understanding the evolutionary trajectories of comparatively old heterotrophic lineages that are on the cusp of a minimal plastome, is essential to complement and expand current knowledge. We study Hydnoraceae, one of the oldest and least investigated parasitic angiosperm lineages.

View Article and Find Full Text PDF

The taxonomy of the Mediterranean complex has been under debate since several decades with the following species currently recognized: . , . , .

View Article and Find Full Text PDF

Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A.

View Article and Find Full Text PDF

section consists of 26 currently accepted species and a yet undefined number of new species and erroneously synonymized taxa. This clade consists of (sub)tropical lianas occurring from northern Mexico to southern Chile and Argentina, and one species from Southeast Asia. Currently, no molecular phylogenetic hypothesis is available that includes more than a few species of this section.

View Article and Find Full Text PDF

Phylogenetic relationships within the magnoliid order Piperales have been studied extensively, yet the relationships of the monotypic family Lactoridaceae and the holoparasitic Hydnoraceae to the remainder of the order remain a matter of debate. Since the first confident molecular phylogenetic placement of Hydnoraceae among Piperales, different studies have recovered various contradictory topologies. Most phylogenetic hypotheses were inferred using only a few loci and have had incomplete taxon sampling at the genus level.

View Article and Find Full Text PDF

The mega-diversity of herbivorous insects is attributed to their co-evolutionary associations with plants. Despite abundant studies on insect-plant interactions, we do not know whether host-plant shifts have impacted both genomic adaptation and species diversification over geological times. We show that the antagonistic insect-plant interaction between swallowtail butterflies and the highly toxic birthworts began 55 million years ago in Beringia, followed by several major ancient host-plant shifts.

View Article and Find Full Text PDF

Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots.

View Article and Find Full Text PDF

Plastomes of parasitic and mycoheterotrophic plants show different degrees of reduction depending on the plants' level of heterotrophy and host dependence in comparison to photoautotrophic sister species, and the amount of time since heterotrophic dependence was established. In all but the most recent heterotrophic lineages, this reduction involves substantial decrease in genome size and gene content and sometimes alterations of genome structure. Here, we present the first plastid genome of the holoparasitic genus which shows clear signs of functionality.

View Article and Find Full Text PDF