We evaluate a method to quantify composition depth gradients in intact metal-organic framework (MOF) single crystals and thereby derive diffusion coefficients of postsynthetically incorporated active sites by nondestructive ion-beam microanalysis. Zr-based UiO-67-bpy (bpy = 2,2'-bipyridine-5,5'-dicarboxylic acid) MOFs were synthesized on Si substrates and then metalated postsynthetically with NiCl for 2-48 h, resulting in different Ni depth distributions. Simultaneous micro-Rutherford backscattering spectrometry (μ-RBS) and micro-particle induced X-ray emission (μ-PIXE) analysis were used for the spatially resolved chemical analysis of the MOF single crystals.
View Article and Find Full Text PDFThe postsynthetic metalation (PSM) of metal-organic frameworks (MOFs) with intrinsic metal binding sites is an intriguing strategy to introduce catalytic function into MOFs. The spatial distribution of the catalytic sites within the MOF crystal will affect the efficiency of the material, but the factors that govern depth distribution of the introduced metal sites are often not well understood. Herein, we employ Rutherford backscattering spectrometry (RBS) to investigate the metal distribution in a series of post-synthetically metalated mixed linker bpdc/BPY UiO-67 (UiO = Universitet i Oslo, bpdc = biphenyl-dicarboxylate, BPY = 2,2'-bipyridine-5,5'-dicarboxylate) single crystals as a function of linker ratio and metalation time.
View Article and Find Full Text PDFThe modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs.
View Article and Find Full Text PDFThe growing field of MOF-catalyst composites often relies on postsynthetic modifications for the installation of active sites. In the resulting MOFs, the spatial distribution of the inserted catalysts has far-reaching ramifications for the performance of the system and thus needs to be precisely determined. Herein, we report the application of a scanning nuclear microprobe for accurate and nondestructive depth profiling of individual UiO-66 and UiO-67 (UiO = Universitetet i Oslo) single crystals.
View Article and Find Full Text PDF