Crystal and cryo-EM structures of the glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) bound with their peptide ligands have been obtained with full-length constructs, indicating that the extracellular domain (ECD) is indispensable for specific ligand binding. This article complements these data with studies of ligand recognition of the two receptors in solution. Paramagnetic NMR relaxation enhancement measurements using dual labeling with fluorine-19 probes on the receptor and nitroxide spin labels on the peptide ligands provided new insights.
View Article and Find Full Text PDFHuman ARID4A and ARID4B are homologous proteins that are important in controlling gene expression and epigenetic regulation but have distinct functions. Previous studies have shown that the N-terminal domain of ARID4A is an unusual interdigitated double Tudor domain with DNA-binding activity. However, how the Tudor domain of ARID4B differs from that of ARID4A remains unknown.
View Article and Find Full Text PDFThe human glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCGR) are class B G protein-coupled receptors (GPCRs) that are activated by interactions with, respectively, the glucagon-like peptide-1 (GLP-1) and glucagon (GCG). These polypeptide hormones are involved in the regulation of lipid and cholic acid metabolism, and thus play an important role in the pathogenesis of glucose metabolism and diabetes mellitus, which attracts keen interest of these GPCRs as drug targets. GLP-1R and GCGR have therefore been extensively investigated by X-ray crystallography and cryo-electron microscopy (cryo-EM), so that their structures are well known.
View Article and Find Full Text PDFHeat shock protein 70 (Hsp70) proteins are a family of ancient and conserved chaperones. Cysteine modifications have been widely detected among different Hsp70 family members , but their effects on Hsp70 structure and function are unclear. Here, we treated HeLa cells with diamide, which typically induces disulfide bond formation except in the presence of excess GSH, when glutathionylated cysteines predominate.
View Article and Find Full Text PDFLarge membrane proteins such as G protein-coupled receptors (GPCRs) are difficult for NMR study due to severe signal overlaps and unfavorable relaxation properties. We used a trimethylsilyl (TMS) group as a reporter group for H NMR study of conformational changes in proteins, utilizing high-intensity H NMR signals near 0 p.p.
View Article and Find Full Text PDFThe allosteric coupling of the highly conserved nucleotide- and substrate-binding domains of Hsp70 has been studied intensively. In contrast, the role of the disordered, highly variable C-terminal region of Hsp70 remains unclear. In many eukaryotic Hsp70s, the extreme C-terminal EEVD motif binds to the tetratricopeptide-repeat domains of Hsp70 co-chaperones.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2018
Acid-sensing ion channels (ASICs) have emerged as important, albeit challenging therapeutic targets for pain, stroke, etc. One approach to developing therapeutic agents could involve the generation of functional antibodies against these channels. To select such antibodies, we used channels assembled in nanodiscs, such that the target ASIC1a has a configuration as close as possible to its natural state in the plasma membrane.
View Article and Find Full Text PDFThe amino acid 4-fluoro-L-phenylalanine (4F-Phe) was introduced at the positions of Phe6 and Phe22 in the 29-residue polypeptide hormone glucagon by expressing glucagon in E. coli in the presence of an excess of 4F-Phe. Glucagon regulates blood glucose homeostasis by interaction with the glucagon receptor (GCGR), a class B GPCR.
View Article and Find Full Text PDFHsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2013
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide.
View Article and Find Full Text PDF