Sensors (Basel)
December 2023
Many emerging Internet of Things (IoT) applications deployed on cloud platforms have strict latency requirements or deadline constraints, and thus meeting the deadlines is crucial to ensure the quality of service for users and the revenue for service providers in these delay-stringent IoT applications. Efficient flow scheduling in data center networks (DCNs) plays a major role in reducing the execution time of jobs and has garnered significant attention in recent years. However, only few studies have attempted to combine job-level flow scheduling and routing to guarantee meeting the deadlines of multi-stage jobs.
View Article and Find Full Text PDFMobile charging devices (MCDs) have been regarded as a promising way to solve the energy shortage of wireless sensor networks. Due to ignoring some important factors, such as redundant sensor nodes, there is still room to improve network lifetimes. We propose a charging strategy for wireless sensor networks with one energy-limited MCD.
View Article and Find Full Text PDFIn wireless rechargeable sensor networks, mobile vehicles (MVs) combining energy replenishment and data collection are studied extensively. To reduce data overflow, most recent work has utilized more vehicles to assist the MV to collect buffered data. However, the practical network environment and the limitations of the vehicle in the data collection are not considered.
View Article and Find Full Text PDFSensors (Basel)
October 2020
In the wireless sensor network, the lifetime of the network can be prolonged by improving the efficiency of limited energy. Existing works achieve better energy utilization, either through node scheduling or routing optimization. In this paper, an efficient solution combining node scheduling with routing protocol optimization is proposed in order to improve the network lifetime.
View Article and Find Full Text PDFRecently, wireless energy transfer technology becomes a popular way to address energy shortage in wireless sensor networks. The capacity of the mobile wireless charging car (WCV) and the wireless channel between the WCV and the sensor are two important factors influencing the energy efficiency of the wireless sensor network, which has not been well considered. In this paper, we study the energy efficiency of a wireless rechargeable sensor network charged by a finite capacity WCV through an imperfect wireless channel.
View Article and Find Full Text PDF