Publications by authors named "Wangshu Mou"

Article Synopsis
  • Stearoyl-acyl carrier protein Δ9 desaturase (SAD) is important in plants for producing unsaturated fatty acids, which are key for growth and development.
  • In barley, researchers identified 14 specific SAD genes and categorized them into four subgroups using genetic and phylogenetic analysis, suggesting that gene duplication contributed to their expansion.
  • The study also revealed that these SAD genes respond differently to environmental stresses like salt, drought, and cold, highlighting their role in oil biosynthesis regulation in plants.
View Article and Find Full Text PDF

Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a class of plant-specific serine/threonine (Ser/Thr) protein kinase that plays an important role in rice stress tolerance, growth and development. However, systematic bioinformatics and expression pattern analysis have not been reported. In the current study, ten genes were identified in the rice genome and located on 7 chromosomes, which can be classified into three subfamilies (I, II, and III).

View Article and Find Full Text PDF

Ethylene signaling directs a pleiotropy of developmental processes in plants. In Arabidopsis, ethylene signaling converges at the master transcription factor Ethylene Insensitive 3 (EIN3), which has five homologs, EIN3-like 1-5 (EIL1-EIL5). EIL1 is most fully characterized and operates similarly to EIN3, while EIL3-5 are not involved in ethylene signaling.

View Article and Find Full Text PDF

In seed plants, 1-amino-cyclopropane-1-carboxylic acid (ACC) is the well-known precursor of the plant hormone ethylene. In nonseed plants, the current view is that ACC is produced but is inefficiently converted to ethylene. Distinct responses to ACC that are uncoupled from ethylene biosynthesis have been discovered in diverse aspects of growth and development in liverworts and angiosperms, indicating that ACC itself can function as a signal.

View Article and Find Full Text PDF

The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses.

View Article and Find Full Text PDF

The perception and signal transduction of the plant hormone abscisic acid (ABA) are crucial for strawberry fruit ripening, but the underlying mechanism of how ABA regulates ripening-related genes has not been well understood. By employing high-throughput sequencing technology, we comprehensively analyzed transcriptomic and miRNA expression profiles simultaneously in ABA- and nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker)-treated strawberry fruits with temporal resolution. The results revealed that ABA regulated many genes in different pathways, including hormone signal transduction and the biosynthesis of secondary metabolites.

View Article and Find Full Text PDF

Many studies have shown that abscisic acid (ABA) regulates climacteric fruits ripening by inducing ethylene production. Nevertheless, the key components involved in the crosstalk between these two phytohormones in controlling fruit ripening remain unknown. SlAREB1, a downstream transcription factor in ABA signaling pathway, has been reported to mediate ABA signaling that regulates tomato ripening through induction of ethylene biosynthetic genes.

View Article and Find Full Text PDF

Fresh button mushrooms (Agaricus bisporus) were harvested and treated with a solution of 1.5% CaCl + 0.5% citric acid and stored for 16 days at 12 °C.

View Article and Find Full Text PDF

Abscisic acid (ABA) is a critical plant hormone for fruit ripening and adaptive stress responses in strawberry. Previous high-throughput sequencing results indicated that ABA-insensitive (ABI)5, an important transcription factor in the ABA signaling pathway, was a target for a novel microRNA (miRNA), Fan-miR73. In the present study, exogenous ABA treatment was found to accelerate fruit ripening through differentially regulating the transcripts of ABA metabolism and signal transduction related genes, including NCED1, PYR1, ABI1, and SnRK2.

View Article and Find Full Text PDF

ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6.

View Article and Find Full Text PDF

Abscisic acid (ABA) has been proven to be involved in the regulation of climacteric fruit ripening, but a comprehensive investigation of its influence on ripening related processes is still lacking. By applying the next generation sequencing technology, we conducted a comparative analysis of the effects of exogenous ABA and NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) on tomato fruit ripening. The high throughput sequencing results showed that out of the 25728 genes expressed across all three samples, 10388 were identified as significantly differently expressed genes.

View Article and Find Full Text PDF

A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: