In this work, temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) and the guanylthiourea (GLA) were used to modify chitosan (CS) to prepare a novel PNIPAM/GLA/CS adsorbent for Ag(I) ions. Temperature variations near the lower critical solution temperature (LCST) facilitate the adjustment of functional group distribution within the composite material, thereby influencing its adsorption performance for silver ions. The characteristics of this composite material were confirmed using a variety of techniques, including scanning electron microscopy (SEM), variable-temperature ultraviolet-visible near-infrared spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFDeveloping circular economy is the only way to improve the efficiency of resource utilization. Whole-cell catalysis is an effective method to recycle enzymes, improve catalytic efficiency, and reduce production costs. The enzyme, α-L-rhamnosidase has considerable application prospects in the field of biocatalysis as it can hydrolyze a variety of α-L rhamnoses.
View Article and Find Full Text PDF