Metastasis is the greatest clinical challenge for UTUCs, which may have distinct molecular and cellular characteristics from earlier cancers. Herein, we provide single-cell transcriptome profiles of UTUC para cancer normal tissue, primary tumor lesions, and lymphatic metastases to explore possible mechanisms associated with UTUC occurrence and metastasis. From 28,315 cells obtained from normal and tumor tissues of 3 high-grade UTUC patients, we revealed the origin of UTUC tumor cells and the homology between metastatic and primary tumor cells.
View Article and Find Full Text PDFSubsequently to the publication of the above article, an interested reader drew to the authors' attention that, concerning the Transwell assay experiments shown in Fig. 3G and I on p. 8, the data panel showing the result of the 'LNCaP / sh‑CASCS11‑1' experiment in Fig.
View Article and Find Full Text PDFBackground: Bladder urothelial carcinoma (BLCA) is a malignancy with a high incidence worldwide. One-third of patients may experience aggressive progression later on, and 70% of patients who have undergone surgical intervention will still suffer from metastasis.
Materials And Methods: RNA sequencing profiles of BLCA samples were obtained from The Cancer Genome Atlas (TCGA) database.
Background: Metastasis is a crucial aspect of disease progression leading to death in patients with prostate cancer (PCa). However, its mechanism remains unclear. We aimed to explore the mechanism of lymph node metastasis (LNM) by analyzing the heterogeneity of tumor microenvironment (TME) in PCa using scRNA-seq.
View Article and Find Full Text PDFAdvanced prostate cancer (PRAD) patients have poor prognosis and rising morbidity despite the ongoing iteration of molecular therapeutic agents. As newly discovered proteins with several functions, Moonlighting proteins have showed an important role in tumor progression but has not been extensively investigated in PRAD. Our study aimed to identify moonlighting-related prognostic biomarkers and prospective PRAD therapy targets.
View Article and Find Full Text PDFCuproptosis, Copper Induced Cell Death, is a newly defined type of programmed cell death, involving in the regulation of tricarboxylic acid (TCA) cycle. Dysfunction of cuproptosis induces cytotoxicity and influences the proliferation of multiple tumors. However, the direct prognostic effect of cuproptosis related genes and corresponding regulating mechanisms amid prostate cancer remains unknown.
View Article and Find Full Text PDFObjective: To establish a ubiquitin-related long noncoding ribonucleic acids (lncRNAs) prognosis prediction model for prostate cancer (Pca).
Methods: Data were acquired through The Cancer Genome Atlas (TCGA) database. Ubiquitin-related differentially expressed genes (DEGs) and lncRNAs in Pca were filtered out.
Despite advances in its treatment, patients diagnosed with clear cell renal cell carcinoma (ccRCC) have a poor prognosis. The mechanism of cuproptosis has been found to differ from other mechanisms that regulate cell death, including apoptosis, iron poisoning, pyrophosphate poisoning, and necrosis. Cuproptosis is an essential component in the regulation of a wide variety of biological processes, such as cell wall remodeling and oxidative stress responses.
View Article and Find Full Text PDFProstate cancer (PCa) is one of the principal causes of cancer‑related death worldwide. The roles and mechanisms of long non‑coding RNA (lncRNA) involved in the development of PCa remain incompletely understood. The present study aimed to investigate the role and mechanism of lncRNA in PCa tumorigenesis.
View Article and Find Full Text PDFBackground: Despite the constant iteration of small-molecule inhibitors and immune checkpoint inhibitors, PRAD (prostate adenocarcinoma) patients with distant metastases and biochemical recurrence maintain a poor survival outcome along with an increasing morbidity in recent years. N-Methylguanine, a new-found type of RNA modification, has demonstrated an essential role in tumor progression but has hardly been studied for its effect on prostate carcinoma. The current study aimed to seek mG (N7-methylguanosine) related prognostic biomarkers and potential targets for PRAD treatment.
View Article and Find Full Text PDFBackground: Aberrant lipid metabolism is an alteration common to many types of cancer. Dysregulation of lipid metabolism is considered a major risk factor for bladder cancer. Accordingly, we focused on genes related to lipid metabolism and screened novel markers for predicting the prognosis of bladder cancer.
View Article and Find Full Text PDFThe platelet-derived growth factor (PDGF) pathway is important in angiogenesis, which can accelerate the formation of vessels in tumor tissues and promote the progression of malignant tumors. To clarify the role of PDGF in the occurrence of renal cell carcinoma and targeted drug resistance, we explored the pathway in kidney renal clear cell carcinoma (KIRC) through bioinformatics analysis with the aim of supporting comprehensive and individualized therapy. First, we found 40 genes related to the PDGF pathway through gene set enrichment analysis and then obtained their expressions and clinical data in 32 different cancers from The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFBackground: Bladder cancer is the leading causes of cancer-associated mortality and seriously affects population health. Hypoxia plays a key role in tumor development and immune escape, which contributes to malignant behaviors.
Methods: In this study, we analyzed the RNA-seq and clinical information of bladder cancer patients from The Cancer Genome Atlas (TCGA) database.