Chronic pain alters the configuration of brain functional networks. Primary dysmenorrhea (PDM) is a form of chronic visceral pain, which has been identified spatial alterations in brain functional networks using static functional connectivity analysis methods. However, the dynamics alterations of brain functional networks during pain-free periovulation phase remain unclear.
View Article and Find Full Text PDFPain catastrophizing is a prominent psychological factor that is strongly correlated with pain. Although the complex properties of pain catastrophizing vary across different pain phases, the contribution of chronic pain to its progression from a general trait to a higher state remains unclear. This study aimed to examine the neural mechanisms and degree to which pain catastrophizing is reinforced in the context of primary dysmenorrhea (PDM), one of the most prevalent gynaecological complaints experienced by women of reproductive age.
View Article and Find Full Text PDFPain empathy enables us to understand and share how others feel pain. Few studies have investigated pain empathy-related functional interactions at the whole-brain level across all networks. Additionally, women with primary dysmenorrhea (PDM) have abnormal pain empathy, and the association among the whole-brain functional network, pain, and pain empathy remain unclear.
View Article and Find Full Text PDFThe human brain is a dynamic system that shows frequency-specific features. Neuroimaging studies have shown that both healthy individuals and those with chronic pain disorders experience pain influenced by various processes that fluctuate over time. Primary dysmenorrhea (PDM) is a chronic visceral pain that disrupts the coordinated activity of brain's functional network.
View Article and Find Full Text PDFPain empathy, defined as the ability of one person to understand another person's pain, shows large individual variations. The anterior insula is the core region of the pain empathy network. However, the relationship between white matter (WM) properties of the fiber tracts connecting the anterior insula with other cortical regions and an individual's ability to modulate pain empathy remains largely unclear.
View Article and Find Full Text PDFPurpose: The study aimed to explore the efficacy and safety of the Neuroform EZ stent in treating acute anterior circulation large artery occlusion.
Methods: The clinical data of 42 consecutive patients with acute anterior circulation large atherosclerotic occlusion who were treated with the Neuroform EZ stent from January 2018 to August 2019 in our stroke care center, including baseline characteristics, images, therapeutic condition, and follow-up data were retrospectively analyzed.
Results: There were 42 mechanical thrombectomy (MT) failure cases of intracranial atherosclerotic stenosis with rescue Neuroform EZ stent implantation, of which 78.
The supraspinal mechanism plays a key role in developing and maintaining chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). However, it is not clear how white matter changes in young and middle-aged males with CP/CPPS. In this cross-sectional study, 23 CP/CPPS patients and 22 healthy controls (HCs) were recruited.
View Article and Find Full Text PDFBackground: The Basal ganglia (BG) played a crucial role in the brain-level mechanisms of chronic pain disorders. However, the functional changes of BG in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) are still poorly understood. This study investigated the BG subregions' resting-state functional connectivity (rs-FC) in CP/CPPS patients compared with healthy controls.
View Article and Find Full Text PDFPrimary dysmenorrhea (PDM) is not only a painful experience but also affects the psychological and affective states of women. Neuroimaging studies have revealed shared neural substrates for somatic and empathic pains in healthy subjects. However, little is known about the relationship between pain intensity and pain empathy in pain disorders.
View Article and Find Full Text PDFEmpathy refers to the ability to understand someone else's emotions and fluctuates with the current state in healthy individuals. However, little is known about the neural network of empathy in clinical populations at different pain states. The current study aimed to examine the effects of long-term pain on empathy-related networks and whether empathy varied at different pain states by studying primary dysmenorrhea (PDM) patients.
View Article and Find Full Text PDFPrimary dysmenorrhea (PDM) is a cyclic menstrual pain in the absence of pelvic anomalies, and women with PDM have an increased sensitivity to pain than the internal and external areas associated with menstrual pain. However, the brain abnormality in the ascending pain pathways in dysmenorrhea remains largely unclear. As the thalamus plays a significant role in transmission of nociceptive input, we examined whether white matter microstructure of the thalamus-related fiber tracts obtained by DTI in women with PDM (n = 47) differs from healthy controls.
View Article and Find Full Text PDFPrimary dysmenorrhea (PDM) is cyclic menstrual pain in the absence of pelvic anomalies, and it is thought to be a sex-hormone related disorder. Existing study has focused on the effects of menstrual cramps on brain function and structure, ignoring the psychological changes associated with menstrual pain. Here we examined whether pain empathy in PDM differs from healthy controls (HC) using task-based functional magnetic resonance imaging (fMRI).
View Article and Find Full Text PDFPrimary dysmenorrhea (PDM), defined as painful menstrual cramps of uterine origin, could cause brain structural and functional changes after long-term menstrual pain. Here, we aimed to investigate the predictive value of uterine morphological features and microstructural/functional properties of the brain extracted from periovulatory phases for the intensity of menstrual pain as rated by women with PDM during their subsequent menstrual period. Forty-five women with PDM were recruited and classified into the high and mild pain intensity groups.
View Article and Find Full Text PDFThe thalamus is a key region for the transmission of nociceptive information in the central modulation of pain and has been studied in the setting of numerous chronic pain conditions. Brain-derived neurotrophic factor (BDNF) is considered an important modulator for mediating nociceptive pathways in chronic pain. The present study aimed to investigate whether there was thalamus-related abnormal functional connectivity or relevant serum BDNF level alterations during periovulation in long-term primary dysmenorrhea (PDM).
View Article and Find Full Text PDFBackground: Primary dysmenorrhoea (PDM), characterized as menstrual pain without pelvic pathology, is associated with pain-related negative mood and hormone fluctuations. Previous studies strongly supported the link between pain and negative mood in affected individuals; however, it remains largely unknown in patients with PDM.
Methods: We focused on the effects how spontaneous pain, negative mood and hormone levels played on the central nervous system in 34 PDM women and 33 matched healthy controls across their cycles (periovulatory phase and menstruation phase) by using T1-weighted and functional imaging.
To develop a machine learning model to investigate the discriminative power of whole-brain gray-matter (GM) images derived from primary dysmenorrhea (PDM) women and healthy controls (HCs) during the pain-free phase and further evaluate the predictive ability of contributing features in predicting the variance in menstrual pain intensity. Sixty patients with PDM and 54 matched female HCs were recruited from the local university. All participants underwent the head and pelvic magnetic resonance imaging scans to calculate GM volume and myometrium-apparent diffusion coefficient (ADC) during their periovulatory phase.
View Article and Find Full Text PDFThe basal ganglia (BG) are composed of several nuclei involved in neural processing associated with integration of sensory and motor information. Recent neuroimaging studies implicated its key role in control of voluntary motor function. As the sensorimotor abnormality is common among the end-stage renal disease (ESRD) population, in the current study, we aimed to investigate the abnormal structure and functional connectivity patterns of BG in ESRD patients.
View Article and Find Full Text PDFIndividual differences of brain changes of neural communication and integration in the modular architecture of the human brain network exist for the repeated migraine attack and physical or psychological stressors. However, whether the interindividual variability in the migraine brain connectome predicts placebo response to placebo treatment is still unclear. Using DTI and graph theory approaches, we systematically investigated the topological organization of white matter networks in 71 patients with migraine without aura (MO) and 50 matched healthy controls at three levels: global network measure, nodal efficiency, and nodal intramodule/intermodule efficiency.
View Article and Find Full Text PDFNeuroimaging studies described brain structural changes that comprise the mechanisms underlying individual differences in migraine development and maintenance. However, whether such interindividual variability in migraine was observed in a pretreatment scan is a predisposition for subsequent hypoalgesia to placebo treatment that remains largely unclear. Using T1-weighted imaging, we investigated this issue in 50 healthy controls (HC) and 196 patients with migraine without aura (MO).
View Article and Find Full Text PDFPrimary dysmenorrhea (PD), as characterized by painful menstrual cramps without organic causes, is associated with central sensitization and brain function changes. Previous studies showed the integrated role of the default mode network (DMN) in the pain connectome and its key contribution on how an individual perceives and copes with pain disorders. Here, we aimed to investigate whether the cingulum bundle connecting hub regions of the DMN was disrupted in young women with PD.
View Article and Find Full Text PDFNeuroimaging studies have demonstrated the critical role of the insula in pain pathways and its close relation with the perceived intensity of nociceptive stimuli. We aimed to identify the structural and functional characteristics of the insula during periovulatory phase in women with primary dysmenorrhea (PDM), and further investigate its association with the intensity of perceived pain during menstruation. Optimized voxel-based morphometry and functional connectivity (FC) analyses were applied by using 3-dimensional T1-weighted and resting functional magnetic resonance imaging (fMRI) in 36 patients at the peri-ovulation phase and 29 age-, education-, and gender-matched healthy controls (HC).
View Article and Find Full Text PDFNeuroimaging studies have preliminarily described brain structural and functional differences that consist of the pain transmission and modulation systems in primary dysmenorrhea (PDM). However, whether PDM subjects have distinctive white matter (WM) alteration during the time when there is no painful menstruation is largely unknown. If that is the case, whether such specific variability is interconnected with the dysmenorrhic symptoms is unclear.
View Article and Find Full Text PDFBecause of the unique position of the topologically central role of densely interconnected brain hubs, our study aimed to investigate whether these regions and their related connections would be particularly vulnerable to migraine. In our study, we explored the rich club structure and its role in global functional dynamics in 30 patients with migraine without aura and 30 healthy controls. DTI and resting fMRI were used to construct structural connectivity (SC) and functional connectivity (FC) networks.
View Article and Find Full Text PDFSleep deprivation (SD) adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF) analysis.
View Article and Find Full Text PDF