Transition metal dichalcogenides (TMDs) are promising candidates for the semiconductor industry owing to their superior electrical properties. Their surface oxidation is of interest because their electrical properties can be easily modulated by an oxidized layer on top of them. Here, we demonstrate the XeF-mediated surface oxidation of 2H-MoTe (alpha phase MoTe).
View Article and Find Full Text PDFThe pursuit of a universal device that combines nonvolatile multilevel storage, ultrafast writing/erasing speed, nondestructive readout, and embedded processing with low power consumption demands the development of innovative architectures. Although thin-film transistors and redox-based resistive-switching devices have independently been proven to be ideal building blocks for data processing and storage, it is still difficult to achieve both well-controlled multilevel memory and high-precision ultrafast processing in a single unit, even though this is essential for the large-scale hardware implementation of in-memory computing. In this work, an ultrafast (≈42 ns) and programable redox thin-film transistor (ReTFT) memory made of a proximity-oxidation-grown TiO layer is developed, which has on/off ratio of 10 , nonvolatile multilevel analog storage with a long retention time, strong durability, and high reliability.
View Article and Find Full Text PDF