Purinergic receptors protect the cochlea during high-intensity stimulation by providing a parallel shunt pathway through non-sensory neighboring epithelial cells for cation absorption. So far, there is no direct functional evidence for the presence and type/subunit of purinergic receptors in the utricle of the vestibular labyrinth. The goal of the present study was to investigate which purinergic receptors are expressed and carry cation-absorption currents in the utricular transitional cells and macula.
View Article and Find Full Text PDF: Mutations of that abrogate pendrin, expressed in endolymphatic sac, cochlea and vestibule, are known to cause autosomal recessive sensorineural hearing loss with enlargement of the membranous labyrinth. This is the first study to demonstrate the feasibility of gene therapy for pendrin-related hearing loss. We used a recombinant viral vector to transfect cDNA into embryonic day 12.
View Article and Find Full Text PDFMouse Tmc1 and Tmc2 are required for sensory transduction in cochlear and vestibular hair cells. Homozygous Tmc1 mice are deaf, Tmc2 mice have normal hearing, and double homozygous Tmc1; Tmc2 mice have deafness and profound vestibular dysfunction. These phenotypes are consistent with their different spatiotemporal expression patterns.
View Article and Find Full Text PDFBackground: Claudins are major components of tight junctions, which form the paracellular barrier between the cochlear luminal and abluminal fluid compartments that supports the large transepithelial voltage difference and the large concentration differences of K, Na and Ca needed for normal cochlear function. Claudins are a family of more than 20 subtypes, but our knowledge about expression and localization of each subtype in the cochlea is limited.
Results: We examined by quantitative RT-PCR the expression of the mRNA of 24 claudin isoforms in mouse cochlea during postnatal development and localized the expression in separated fractions of the cochlea.
Mutations of are a common cause of hearing loss associated with enlargement of the endolymphatic sac (EES). expression in the developing mouse endolymphatic sac is required for acquisition of normal inner ear structure and function. Here, we show that the mouse endolymphatic sac absorbs fluid in an SLC26A4-dependent fashion.
View Article and Find Full Text PDFBackground: Pendrin, the chloride/bicarbonate exchanger of β-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure.
Methods: Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline.
Background: In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca sparks activate large-conductance Ca-activated K (BK) channels leading to lowered SMC [Ca] and vasodilation. Here we investigated whether Ca sparks regulate SMC global [Ca] and diameter in the spiral modiolar artery (SMA) by activating BK channels.
Methods: SMAs were isolated from adult female gerbils, loaded with the Ca-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system.
Background: Disturbance of acid-base balance in the inner ear is known to be associated with hearing loss in a number of conditions including genetic mutations and pharmacologic interventions. Several previous physiologic and immunohistochemical observations lead to proposals of the involvement of acid-base transporters in stria vascularis.
Results: We directly measured acid flux in vitro from the apical side of isolated stria vascularis from adult C57Bl/6 mice with a novel constant-perfusion pH-selective self-referencing probe.
SLC26A4 mutations cause fluctuating and progressive hearing loss associated with enlargement of the vestibular aqueduct (EVA). SLC26A4 encodes a transmembrane anion exchanger called pendrin expressed in nonsensory epithelial cells of the lateral wall of cochlea, vestibular organs and endolymphatic sac. We previously described a transgenic mouse model of EVA with doxycycline (dox)-inducible expression of Slc26a4 in which administration of dox from conception to embryonic day 17.
View Article and Find Full Text PDFHearing loss of patients with enlargement of the vestibular aqueduct (EVA) can fluctuate or progress, with overall downward progression. The most common detectable cause of EVA is mutations of SLC26A4. We previously described a transgenic Slc26a4-insufficient mouse model of EVA in which Slc26a4 expression is controlled by doxycycline administration.
View Article and Find Full Text PDFA class of tetracyclic terpenes was synthesized and evaluated for antagonistic activity of endothelin-1 (ET-1) induced vasoconstriction and inhibitory activity of voltage-activated Ca(2+) channels. Three repeated Robinson annulation reactions were utilized to construct the tetracyclic molecules. A stereoselective reductive Robinson annulation was discovered for the formation of optically pure tricyclic terpenes.
View Article and Find Full Text PDFSeveral members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice.
View Article and Find Full Text PDFSLC26A4 mutations can cause a distinctive hearing loss phenotype with sudden drops and fluctuation in patients. Existing Slc26a4 mutant mouse lines have a profound loss of hearing and vestibular function, with severe inner ear malformations that do not model this human phenotype. In this study, we generated Slc26a4-insufficient mice by manipulation of doxycycline administration to a transgenic mouse line in which all Slc26a4 expression was under the control of doxycycline.
View Article and Find Full Text PDFCell Physiol Biochem
September 2014
The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA) and sensorineural hearing loss.
View Article and Find Full Text PDFMutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 (Δ/Δ) mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype.
View Article and Find Full Text PDFSlc26a4 (Δ/Δ) mice are deaf, develop an enlarged membranous labyrinth, and thereby largely resemble the human phenotype where mutations of SLC26A4 cause an enlarged vestibular aqueduct and sensorineural hearing loss. The enlargement is likely caused by abnormal ion and fluid transport during the time of embryonic development, however, neither the mechanisms of ion transport nor the ionic composition of the luminal fluid during this time of development are known. Here we determine the ionic composition of inner ear fluids at the time at which the enlargement develops and the onset of expression of selected ion transporters.
View Article and Find Full Text PDFWorld J Otorhinolaryngol
May 2013
Pendred syndrome (PS) is characterized by autosomal recessive inheritance of goiter associated with a defect of iodide organification, hearing loss, enlargement of the vestibular aqueduct (EVA), and mutations of the gene. However, not all EVA patients have PS or mutations. Two mutant alleles of are detected in ¼ of North American or European EVA populations, one mutant allele is detected in another ¼ of patient populations, and no mutations are detected in the other ½.
View Article and Find Full Text PDFCochlear blood flow regulation is important to prevent hearing loss caused by ischemia and oxidative stress. Cochlear blood supply is provided by the spiral modiolar artery (SMA). The myogenic tone of the SMA is enhanced by the nitric oxide synthase (NOS) blocker L-N(G)-nitro-arginine (LNNA) in males, but not in females.
View Article and Find Full Text PDFAmeloblasts need to regulate pH during the formation of enamel crystals, a process that generates protons. Solute carrier family 26A member 4 (SLC26A4, or pendrin) is an anion exchanger for chloride, bicarbonate, iodine, and formate. It is expressed in apical membranes of ion-transporting epithelia in kidney, inner ear, and thyroid where it regulates luminal pH and fluid transport.
View Article and Find Full Text PDFEnlargement of the vestibular aqueduct (EVA) is the most common inner ear anomaly detected in ears of children with sensorineural hearing loss. Pendred syndrome (PS) is an autosomal recessive disorder characterized by bilateral sensorineural hearing loss with EVA and an iodine organification defect that can lead to thyroid goiter. Pendred syndrome is caused by mutations of the SLC26A4 gene.
View Article and Find Full Text PDFEnlargement of the vestibular aqueduct (EVA) is a common inner ear malformation found in children with sensorineural hearing loss that is frequently associated with loss-of-function or hypo-function mutations of SLC26A4. SLC26A4 codes for pendrin, which is a protein that is expressed in apical membranes of selected epithelia and functions as an anion exchanger. The comparatively high prevalence of EVA provides a strong imperative to develop rational interventions that delay, ameliorate or prevent hearing loss associated with this phenotype.
View Article and Find Full Text PDFThe spiral modiolar artery supplies blood and essential nutrients to the cochlea. Our previous functional study indicates the α(1A)-adrenergic receptor subtype mediates vasoconstriction of the gerbil spiral modiolar artery. Although the gerbil cochlea is often used as a model in hearing research, the molecular and pharmacological characteristics of the cloned gerbil α(1a)-adrenergic receptor have not been determined.
View Article and Find Full Text PDFRegulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible.
View Article and Find Full Text PDFMutations in human SLC26A4 are a common cause of hearing loss associated with enlarged vestibular aqueducts (EVA). SLC26A4 encodes pendrin, an anion-base exchanger expressed in inner ear epithelial cells that secretes HCO3- into endolymph. Studies of Slc26a4-null mice indicate that pendrin is essential for inner ear development, but have not revealed whether pendrin is specifically necessary for homeostasis.
View Article and Find Full Text PDF