Publications by authors named "WangHua Gong"

Background: Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells.

View Article and Find Full Text PDF

Formyl peptide receptor 2 (FPR2) and its mouse counterpart Fpr2 are the members of the G protein-coupled receptor (GPCR) family. FPR2 is the only member of the FPRs that interacts with ligands from different sources. FPR2 is expressed in myeloid cells as well as epithelial cells, endothelial cells, neurons, and hepatocytes.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential.

View Article and Find Full Text PDF

Human cathelicidin antimicrobial peptide LL-37 (LL-37) is an antimicrobial peptide derived from its precursor protein hCAP18, which is an only cathelicidin in human. LL-37 not only serves as a mediator of innate immune defense against invading microorganisms, but it also plays an essential role in tissue homeostasis, regenerative processes, regulation of proinflammatory responses, and inhibition of cancer progression. Therefore, LL-37 has been considered as a drug lead for diseases.

View Article and Find Full Text PDF

Disruption in mucins (MUCs) is involved in cancer development and metastasis and is thus used as a biomarker. Non‑small cell lung carcinoma (NSCLC) is characterized by heterogeneous genetic and epigenetic alterations. Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the two primary subtypes of NSCLC that require different therapeutic interventions.

View Article and Find Full Text PDF

Host-derived antimicrobial peptides play an important role in the defense against extracellular bacterial infections. However, the capacity of antimicrobial peptides derived from macrophages as potential antibacterial effectors against intracellular pathogens remains unknown. In this study, we report that normal (wild-type, WT) mouse macrophages increased their expression of cathelin-related antimicrobial peptide (CRAMP, encoded by ) after infection by viable or stimulation with inactivated and its product lipopolysaccharide (LPS), a process involving activation of NF-κB followed by protease-dependent conversion of CRAMP from an inactive precursor to an active form.

View Article and Find Full Text PDF

Chronic inflammation is a causative factor of many cancers, although it originally acts as a protective host response to the loss of tissue homeostasis. Many inflammatory conditions predispose susceptible cells, most of which are of epithelial origin, to neoplastic transformation. There is a close correlation between digestive tract (DT) cancer and chronic inflammation, such as esophageal adenocarcinoma associated with Barrett's esophagus, infection as the cause of stomach cancer, hepatitis leading to liver cirrhosis and subsequent cancer, and colon cancer linking to inflammatory bowel diseases and .

View Article and Find Full Text PDF

The physiological homeostasis of gut mucosal barrier is maintained by both genetic and environmental factors and its impairment leads to pathogenesis such as inflammatory bowel disease. A cytokine like molecule, FAM3D (mouse Fam3D), is highly expressed in mouse gastrointestinal tract. Here, we demonstrate that deficiency in Fam3D is associated with impaired integrity of colonic mucosa, increased epithelial hyper-proliferation, reduced anti-microbial peptide production and increased sensitivity to chemically induced colitis associated with high incidence of cancer.

View Article and Find Full Text PDF

The cathelin-related antimicrobial peptide CRAMP protects the mouse colon from inflammation, inflammation-associated carcinogenesis, and disrupted microbiome balance, as shown in systemic Cnlp mice (also known as Camp mice). However, the mechanistic basis for the role and the cellular source of CRAMP in colon pathophysiology are ill defined. This study, using either epithelial or myeloid conditional Cnlp mice, demonstrated that epithelial cell-derived CRAMP played a major role in supporting normal development of colon crypts, mucus production, and repair of injured mucosa.

View Article and Find Full Text PDF

Formyl peptide receptors (FPRs, mouse Fprs) belong to the G protein-coupled receptor superfamily and mediate phagocyte migration in response to bacteria- and host-derived chemoattractants; however, knowledge about their in vivo roles in bacterial pathogenesis is limited. In this study, we investigated the role of Fpr1 and Fpr2 in host defense against infection. In vitro, we found that supernatants from cultures induced chemotaxis of wild-type (WT) mouse bone marrow-derived neutrophils and that the activity was significantly reduced in cells genetically deficient in either Fpr1 or Fpr2 and was almost absent in cells lacking both receptors.

View Article and Find Full Text PDF

A hallmark of inflammatory responses is leukocyte mobilization, which is mediated by pathogen and host released chemotactic factors that activate Gi-protein-coupled seven-transmembrane receptors (GPCRs) on host cell surface. Formylpeptide receptors (FPRs, Fprs in mice) are members of the chemoattractant GPCR family, shown to be critical in myeloid cell trafficking during infection, inflammation, immune responses, and cancer progression. Accumulating evidence demonstrates that both human FPRs and murine Fprs are involved in a number of patho-physiological processes because of their expression on a wide variety of cell types in addition to myeloid cells.

View Article and Find Full Text PDF

Objectives: Trauma predisposes to systemic sterile inflammation (systemic inflammatory response syndrome) as well as infection, but the mechanisms linking injury to infection are poorly understood. Mitochondrial debris contains formyl peptides. These bind formyl peptide receptor-1, trafficking neutrophils to wounds, initiating systemic inflammatory response syndrome, and wound healing.

View Article and Find Full Text PDF

Mouse cathelin-related antimicrobial peptide (CRAMP) and its homologue human cathelicidin (LL-37) play active roles in innate immune responses, angiogenesis, and wound healing. In addition, LL-37/CRAMP fends off microbes and protects against infections in the colon, where the epithelium is exposed to myriad of enteric pathogens. It is increasingly recognized that LL-37/CRAMP maintains colon mucosal barrier integrity, shapes the composition of microbiota, and protects the host from tumorigenesis.

View Article and Find Full Text PDF

Diabetes mellitus, characterized by hyperglycemia, is considered as a risk factor of cancers including malignant gliomas. However, the direct effect of high glucose on cancer cell behavior is not clear. We therefore investigated the effect of hyperglycemia on the growth of human glioblastoma (GBM) cells.

View Article and Find Full Text PDF

Purpose: Metallothionein 2A (MT2A) suppresses the progression of human gastric cancer potentially through an "MT2A-NF-κB pathway" with unclear mechanisms. This study explored the role of a transcription factor, myeloid zinc-finger 1 (MZF1), in MT2A-NF-κB pathway and its clinical significance in gastric cancer.

Experimental Design: MZF1 expression and function in gastric cancer were investigated and .

View Article and Find Full Text PDF

Phagocytic cells in fish secrete antimicrobial peptides (AMPs) such as piscidins, glycosaminoglycans such as heparin, and copper ions as first-line immune defenses. Recently, we established that Cu coordination by piscidins 1 (P1) and 3 (P3) enhances their antibacterial activity against membranes and DNA. Interestingly, we noted that physicochemical similarities exist between both piscidins and other AMPs that interact with heparin and induce immune-cell chemotaxis through formyl peptide receptors (FPRs) involved in innate immunity.

View Article and Find Full Text PDF

The Linc-Kit Sca-1 cell population in the bone marrow (BM) serves as the direct precursor for differentiation of myeloid cells. In this study, we report that deficiency in Fpr2, a G protein-coupled chemoattractant receptor in mice, is associated with reduced BM nucleated cells, including CD31Ly6C (granulocytes and monocytes), CD31/Ly6C (granuloid cells), and CD31/Ly6C (predominantly monocytes) cells. In particular, the number of Linc-KitSca-1 (LKS) cells was reduced in Fpr2 mouse BM.

View Article and Find Full Text PDF

Commensal bacteria are critical for physiological functions in the gut, and dysbiosis in the gut may cause diseases. In this article, we report that mice deficient in cathelin-related antimicrobial peptide (CRAMP) were defective in the development of colon mucosa and highly sensitive to dextran sulfate sodium (DSS)-elicited colitis, as well as azoxymethane-mediated carcinogenesis. Pretreatment of CRAMP mice with antibiotics markedly reduced the severity of DSS-induced colitis, suggesting CRAMP as a limiting factor on dysbiosis in the colon.

View Article and Find Full Text PDF

For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases.

View Article and Find Full Text PDF

Lung cancer is one of the deadliest malignant tumors with limited treatment options. Although targeted therapy, using tyrosine-kinase inhibitors such as erlotinib (Erlo), has shown therapeutic benefit, only 15 % patients with mutated epidermal growth factor receptor (EGFR) in lung cancer cells are sensitive. Therefore, additional therapeutic strategy should be developed.

View Article and Find Full Text PDF

In proliferative diabetic retinopathy (PDR), activated Müller glial cells (MGCs) exhibit increased motility and a fibroblast-like proliferation phenotype that contribute to the formation of fibrovascular membrane. In this study, we investigated the capacity of high glucose (HG) to regulate the expression of cell surface receptors that may participate in the proinflammatory responses of MGCs. We found that MGCs express a G-protein coupled chemoattractant receptor formyl peptide receptor 2 (Fpr2) and fibroblast growth factor receptor 1 (FGFR1), which mediated MGC migration and proliferation in response to corresponding ligands.

View Article and Find Full Text PDF

Inflammation is associated with a variety of diseases. The hallmark of inflammation is leukocyte infiltration at disease sites in response to pathogen- or damage-associated chemotactic molecular patterns (PAMPs and MAMPs), which are recognized by a superfamily of seven transmembrane, Gi-protein-coupled receptors (GPCRs) on cell surface. Chemotactic GPCRs are composed of two major subfamilies: the classical GPCRs and chemokine GPCRs.

View Article and Find Full Text PDF

The ATPase H+/K+ Transporting Beta Subunit (ATP4B) encodes the β subunit of the gastric H+, K+-ATPase, which controls gastric acid secretion and is therefore a target for acid reduction. Downregulation of ATP4B was recently observed in human gastric cancer (GC) without known mechanisms. In the present study, we demonstrated that ATP4B expression was decreased in human GC tissues and cell lines associated with DNA hypermethylation and histone hypoacetylation of histone H3 lysine 9 at its intragenic region close to the transcriptional start site.

View Article and Find Full Text PDF