Publications by authors named "WangChao Chen"

Article Synopsis
  • The study presents the careful fabrication of SbS and low-Se content SbSeS indoor photovoltaic devices and introduces a measurement protocol for assessing their performance.
  • The integration of a SnO buried layer reduces the CdS layer's thickness and parasitic absorption, while adding a small amount of Se and utilizing specific materials enhances charge transport in the cells.
  • The reported power conversion efficiencies (PCEs) for these indoor photovoltaics achieve notable values, reaching up to 18.53%, which supports the potential for self-powered IoT devices and contributes to energy recycling and decreased battery usage.
View Article and Find Full Text PDF

Emerging evidence suggests that both selective and non-selective Adenosine A receptor (AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of AR signaling in EAE pathology has raised concerns about the feasibility of using AR antagonists as a therapeutic approach for MS.

View Article and Find Full Text PDF

Analyzing the therapeutic potential of a therapeutic biomolecule requires an understanding of how it may interact with proteins and modify their corresponding functions. α-Synuclein is a protein which is widely involved in the pathogenesis of Parkinson's disease (PD) and shows chaperon-like activity. We have selected tectorigenin, a most common methoxyisoflavone extracted from plants, among therapeutic bioactive molecules that are documented to have different therapeutic effects.

View Article and Find Full Text PDF

It has been found that the main cause of neurodegenerative proteinopathies, especially Alzheimer's disease (AD) is the formation of Aβ amyloid plaques, which can be regulated by application of potential small molecules. In the present study, we aimed to investigate the inhibitory effect of danshensu on Aβ(1-42) aggregation and relevant apoptotic pathway in neurons. A broad range of spectroscopic, theoretical, and cellular assays were done to investigate the anti-amyloidogenic characteristics of danshensu.

View Article and Find Full Text PDF

Two organic hole-transporting materials comprising a two-dimensional triphenylene core and methoxyl-arylamine terminal units are developed and applied in perovskite solar cells. Enhanced photovoltaic and stability performance are obtained using TPH-T compared with those of spiro-OMeTAD.

View Article and Find Full Text PDF

In this article, hierarchical TiO microstructures (HM-TiO) were synthesized by a simple solvothermal method adopting tetra-n-butyl titanate as the titanium source in a mixed solvent composed of N,N-dimethylformamide and acetic acid. Due to the high crystallinity and superior light-scattering ability, the resultant HM-TiO are advantageous as photoanodes for dye-sensitized solar cells. When assembled to the entire photovoltaic device with C101 dye as a sensitizer, the pure HM-TiO-based solar cells showed an ultrahigh photovoltage up to 0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers synthesized two new hole transporting materials using arylamine and an anthracene linker for use in perovskite solar cells.
  • Testing revealed that one of the new materials, A102, outperformed the commonly used spiro-OMeTAD in terms of power conversion efficiency.
  • Additionally, A102 demonstrated improved stability for the solar cells, indicating its potential for better long-term performance.
View Article and Find Full Text PDF

Three benzene-arylamine hole-transporting materials (HTMs) with different numbers of terminal groups were prepared. It is noted that the molecule with three arms (H-Tri) shows a lower highest occupied molecular orbital level and a better film morphology on perovskite layer than the molecules with two or four arms (H-Di, H-Tetra). When these molecules were applied to the perovskite solar cells, the H-Tri-based one showed better performance compared with the H-Di- or H-Tetra-based ones.

View Article and Find Full Text PDF

Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs.

View Article and Find Full Text PDF

A new class of hole-transporting materials (HTM) containing tetraphenylmethane (TPM) core have been developed. After thermal, charge carrier mobility, and contact angle tests, it was found that TPA-TPM (TPA: arylamine derivates side group) showed higher glass-transition temperature and larger water-contact angle than spiro-OMeTAD with comparable hole mobility. Photoluminescence and impedance spectroscopy studies indicate that TPA-TPM's hole-extraction ability is comparable to that of spiro-OMeTAD.

View Article and Find Full Text PDF

Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1).

View Article and Find Full Text PDF

Three heteroleptic ruthenium complexes, RC-15, RC-16 and RC-22, with sulfur- or oxygen-containing electron-donor, phenylpyridine-based ancillary ligands, are synthesized. The influence of the different electron donors-the acyclic electron donors methylthio and methoxyl, and the cyclic electron donor methylenedioxy-on the photophysical and electrochemical behavior in dye sensitizers and photovoltaic performance in DSSCs are investigated. Compared to the conventional dye N3, all the dyes demonstrate superior performance in the form of molar absorptivity, photocurrent density (J(SC)) and conversion efficiency (η).

View Article and Find Full Text PDF

Yolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells.

View Article and Find Full Text PDF

TiO2 microspheres are of great interest for a great deal of applications, especially in the solar cell field. Because of their unique microstructure and light-scattering effect, TiO2 microsphere-based solar cells often exhibit superior photovoltaic performance. Hence, exploring new suitable TiO2 microspheres for high-efficiency solar cells is essential.

View Article and Find Full Text PDF