Publications by authors named "Wang-Ren Qiu"

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) is a modification of cytidine at the nitrogen-4 position, playing a significant role in the translation process of mRNA. However, the precise mechanism and details of how ac4C modifies translated mRNA remain unclear. Since identifying ac4C sites using conventional experimental methods is both labor-intensive and time-consuming, there is an urgent need for a method that can promptly recognize ac4C sites.

View Article and Find Full Text PDF

Malignancies such as bladder urothelial carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, lung adenocarcinoma and prostate adenocarcinoma significantly impact men's well-being. Accurate cancer classification is vital in determining treatment strategies and improving patient prognosis. This study introduced an innovative method that utilizes gene selection from high-dimensional datasets to enhance the performance of the male tumor classification algorithm.

View Article and Find Full Text PDF

Accurate identification of inter-chain contacts in the protein complex is critical to determine the corresponding 3D structures and understand the biological functions. We proposed a new deep learning method, ICCPred, to deduce the inter-chain contacts from the amino acid sequences of the protein complex. This pipeline was built on the designed deep residual network architecture, integrating the pre-trained language model with three multiple sequence alignments (MSAs) from different biological views.

View Article and Find Full Text PDF

The mortality rate from cervical cancer (CESC), a malignant tumor that affects women, has increased significantly globally in recent years. The discovery of biomarkers points to a direction for the diagnosis of cervical cancer with the advancement of bioinformatics technology. The goal of this study was to look for potential biomarkers for the diagnosis and prognosis of CESC using the GEO and TCGA databases.

View Article and Find Full Text PDF

As one of the most common diseases in pediatric surgery, an inguinal hernia is usually diagnosed by medical experts based on clinical data collected from magnetic resonance imaging (MRI), computed tomography (CT), or B-ultrasound. The parameters of blood routine examination, such as white blood cell count and platelet count, are often used as diagnostic indicators of intestinal necrosis. Based on the medical numerical data on blood routine examination parameters and liver and kidney function parameters, this paper used machine learning algorithm to assist the diagnosis of intestinal necrosis in children with inguinal hernia before operation.

View Article and Find Full Text PDF

The early symptoms of lung adenocarcinoma patients are inapparent, and the clinical diagnosis of lung adenocarcinoma is primarily through X-ray examination and pathological section examination, whereas the discovery of biomarkers points out another direction for the diagnosis of lung adenocarcinoma with the development of bioinformatics technology. However, it is not accurate and trustworthy to diagnose lung adenocarcinoma due to omics data with high-dimension and low-sample size (HDLSS) features or biomarkers produced by utilizing only single omics data. To address the above problems, the feature selection methods of biological analysis are used to reduce the dimension of gene expression data (GSE19188) and DNA methylation data (GSE139032, GSE49996).

View Article and Find Full Text PDF

Drug-target interactions (DTIs) are regarded as an essential part of genomic drug discovery, and computational prediction of DTIs can accelerate to find the lead drug for the target, which can make up for the lack of time-consuming and expensive wet-lab techniques. Currently, many computational methods predict DTIs based on sequential composition or physicochemical properties of drug and target, but further efforts are needed to improve them. In this article, we proposed a new sequence-based method for accurately identifying DTIs.

View Article and Find Full Text PDF

Pupylation is an important posttranslational modification in proteins and plays a key role in the cell function of microorganisms; an accurate prediction of pupylation proteins and specified sites is of great significance for the study of basic biological processes and development of related drugs since it would greatly save experimental costs and improve work efficiency. In this work, we first constructed a model for identifying pupylation proteins. To improve the pupylation protein prediction model, the KNN scoring matrix model based on functional domain GO annotation and the Word Embedding model were used to extract the features and Random Under-sampling (RUS) and Synthetic Minority Over-sampling Technique (SMOTE) were applied to balance the dataset.

View Article and Find Full Text PDF

Protein S-nitrosylation is one of the most important post-translational modifications, a well-grounded understanding of S-nitrosylation is very significant since it plays a key role in a variety of biological processes. For an uncharacterized protein sequence, it is a very meaningful problem for both basic research and drug development when we can firstly identify whether it is a S-nitrosylation protein or not, and then predict the specific S-nitrosylation site(s). This work has proposed two models for identifying S-nitrosylation protein and its PTM sites.

View Article and Find Full Text PDF

Ion channels are the second largest drug target family. Ion channel dysfunction may lead to a number of diseases such as Alzheimer's disease, epilepsy, cephalagra, and type II diabetes. In the research work for predicting ion channel-drug, computational approaches are effective and efficient compared with the costly, labor-intensive, and time-consuming experimental methods.

View Article and Find Full Text PDF

Intestinal obstruction is a common surgical emergency in children. However, it is challenging to seek appropriate treatment for childhood ileus since many diagnostic measures suitable for adults are not applicable to children. The rapid development of machine learning has spurred much interest in its application to medical imaging problems but little in medical text mining.

View Article and Find Full Text PDF

Proteins play primary roles in important biological processes such as catalysis, physiological functions, and immune system functions. Thus, the research on how proteins evolved has been a nuclear question in the field of evolutionary biology. General models of protein evolution help to determine the baseline expectations for evolution of sequences, and these models have been extensively useful in sequence analysis as well as for the computer simulation of artificial sequence data sets.

View Article and Find Full Text PDF

Acetylation is one of post-translational modification (PTM), which often reacts with acetic acid and brings an acetyl radical to an organic compound. It is helpful to identify acetylation protein correctly for understanding the mechanism of acetylation in biological systems. Although many acetylation sites have been identified by high throughput experimental studies via mass spectrometry, there still are lots of acetylation sites need to be discovered.

View Article and Find Full Text PDF

Background: The information of quaternary structure attributes of proteins is very important because it is closely related to the biological functions of proteins. With the rapid development of new generation sequencing technology, we are facing a challenge: how to automatically identify the four-level attributes of new polypeptide chains according to their sequence information (i.e.

View Article and Find Full Text PDF

Motivation: Dihydrouridine (D) is a common RNA post-transcriptional modification found in eukaryotes, bacteria and a few archaea. The modification can promote the conformational flexibility of individual nucleotide bases. And its levels are increased in cancerous tissues.

View Article and Find Full Text PDF

The promoter is a regulatory DNA region about 81-1000 base pairs long, usually located near the transcription start site (TSS) along upstream of a given gene. By combining a certain protein called transcription factor, the promoter provides the starting point for regulated gene transcription, and hence plays a vitally important role in gene transcriptional regulation. With explosive growth of DNA sequences in the post-genomic age, it has become an urgent challenge to develop computational method for effectively identifying promoters because the information thus obtained is very useful for both basic research and drug development.

View Article and Find Full Text PDF

Meiotic recombination caused by meiotic double-strand DNA breaks. In some regions the frequency of DNA recombination is relatively higher, while in other regions the frequency is lower: the former is usually called "recombination hotspot", while the latter the "recombination coldspot". Information of the hot and cold spots may provide important clues for understanding the mechanism of genome revolution.

View Article and Find Full Text PDF

Lysine crotonylation (Kcr) is an evolution-conserved histone posttranslational modification (PTM), occurring in both human somatic and mouse male germ cell genomes. It is important for male germ cell differentiation. Information of Kcr sites in proteins is very useful for both basic research and drug development.

View Article and Find Full Text PDF

Gene splicing is one of the most significant biological processes in eukaryotic gene expression, such as RNA splicing, which can cause a pre-mRNA to produce one or more mature messenger RNAs containing the coded information with multiple biological functions. Thus, identifying splicing sites in DNA/RNA sequences is significant for both the bio-medical research and the discovery of new drugs. However, it is expensive and time consuming based only on experimental technique, so new computational methods are needed.

View Article and Find Full Text PDF

Objective: Being a kind of post-transcriptional modification (PTCM) in RNA, the 2'-Omethylation modification occurs in the processes of life development and disease formation as well. Accordingly, from the angles of both basic research and drug development, we are facing a challenging problem: given an uncharacterized RNA sequence formed by many nucleotides of A (adenine), C (cytosine), G (guanine), and U (uracil), which one can be of 2-O'-methylation modification, and which one cannot? Unfortunately, so far no computational method whatsoever has been developed to address such a problem.

Method: To fill this empty area, we propose a predictor called iRNA-2methyl.

View Article and Find Full Text PDF

Protein phosphorylation plays a critical role in human body by altering the structural conformation of a protein, causing it to become activated/deactivated, or functional modification. Given an uncharacterized protein sequence, can we predict whether it may be phosphorylated or may not? This is no doubt a very meaningful problem for both basic research and drug development. Unfortunately, to our best knowledge, so far no high throughput bioinformatics tool whatsoever has been developed to address such a very basic but important problem due to its extremely complexity and lacking sufficient training data.

View Article and Find Full Text PDF

Occurring at cytosine (C) of RNA, 5-methylcytosine (m5C) is an important post-transcriptional modification (PTCM). The modification plays significant roles in biological processes by regulating RNA metabolism in both eukaryotes and prokaryotes. It may also, however, cause cancers and other major diseases.

View Article and Find Full Text PDF

Objective: Lysine crotonylation (Kcr) is a newly discovered histone posttranslational modification, which is specifically enriched at active gene promoters and potential enhancers in mammalian cell genomes. Although lysine crotonylation sites can be correctly identified with high-resolution mass spectrometry, the experimental methods are time-consuming and expensive. Therefore, it is necessary to develop computational methods to deal with this problem.

View Article and Find Full Text PDF

Predicting phosphorylation protein is a challenging problem, particularly when query proteins have multi-label features meaning that they may be phosphorylated at two or more different type amino acids. In fact, human protein usually be phosphorylated at serine, threonine and tyrosine. By introducing the "multi-label learning" approach, a novel predictor has been developed that can be used to deal with the systems containing both single- and multi-label phosphorylation protein.

View Article and Find Full Text PDF