Plaque vulnerability has been the subject of several recent studies aimed at reducing the risk of stroke and carotid artery stenosis. Atherosclerotic plaque development is a complex process involving inflammation mediated by macrophages. Plaques become more vulnerable when the equilibrium between macrophage recruitment and clearance is disturbed.
View Article and Find Full Text PDFAnalyzing the therapeutic potential of a therapeutic biomolecule requires an understanding of how it may interact with proteins and modify their corresponding functions. α-Synuclein is a protein which is widely involved in the pathogenesis of Parkinson's disease (PD) and shows chaperon-like activity. We have selected tectorigenin, a most common methoxyisoflavone extracted from plants, among therapeutic bioactive molecules that are documented to have different therapeutic effects.
View Article and Find Full Text PDFThis study established the EA.hy926 cell myocardial ischemia model to compare the effects of two Kaixin Powder prescriptions, Buxin Decoction(BXD) and Dingzhi Pills(DZP), at three dosages(500, 200, and 100 μg·mL~(-1)) on the cell viability. Further, the public databases(TCMSP, TCMID, SYMMAP, and STRING) and the network pharmacology methods such as KEGG pathway enrichment were employed to decipher the possible molecular mechanism of BXD in exerting the cardioprotective effect.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
July 2022
Objectives: Kaixinsan (KXS), a traditional Chinese medicine formula, has been demonstrated to be effective in the treatment of depression. The present study applied a network pharmacology approach to dig out the new targets and mechanism of action of KXS and the active compounds in the treatment of depression.
Methods: A network pharmacology approach based on public databases including ADME (absorption, distribution, metabolism, and excretion) evaluation, targets prediction, construction of networks, and molecule docking was used and validated the predicted new antioxidant targets and mechanisms in vitro.
In this article, hierarchical TiO microstructures (HM-TiO) were synthesized by a simple solvothermal method adopting tetra-n-butyl titanate as the titanium source in a mixed solvent composed of N,N-dimethylformamide and acetic acid. Due to the high crystallinity and superior light-scattering ability, the resultant HM-TiO are advantageous as photoanodes for dye-sensitized solar cells. When assembled to the entire photovoltaic device with C101 dye as a sensitizer, the pure HM-TiO-based solar cells showed an ultrahigh photovoltage up to 0.
View Article and Find Full Text PDFChronic intestinal pseudo-obstruction (CIPO) is a rare intestinal motility disorder with significant morbidity and mortality in pediatric patients. The diagnosis of CIPO is difficult, because it is clinically based on the symptoms and signs of bowel obstruction which are similar to the clinical manifestations of other gastrointestinal diseases like short bowel syndrome (SBS). Therefore, it is desirable to identify and establish new laboratory diagnostic markers for CIPO that are reliable and easily accessible.
View Article and Find Full Text PDFThree heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1).
View Article and Find Full Text PDFThree heteroleptic ruthenium complexes, RC-15, RC-16 and RC-22, with sulfur- or oxygen-containing electron-donor, phenylpyridine-based ancillary ligands, are synthesized. The influence of the different electron donors-the acyclic electron donors methylthio and methoxyl, and the cyclic electron donor methylenedioxy-on the photophysical and electrochemical behavior in dye sensitizers and photovoltaic performance in DSSCs are investigated. Compared to the conventional dye N3, all the dyes demonstrate superior performance in the form of molar absorptivity, photocurrent density (J(SC)) and conversion efficiency (η).
View Article and Find Full Text PDFYolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells.
View Article and Find Full Text PDFTiO2 microspheres are of great interest for a great deal of applications, especially in the solar cell field. Because of their unique microstructure and light-scattering effect, TiO2 microsphere-based solar cells often exhibit superior photovoltaic performance. Hence, exploring new suitable TiO2 microspheres for high-efficiency solar cells is essential.
View Article and Find Full Text PDFThe c-erbB-2 proto-oncogene encodes a 185kDa protein p185, which belongs to epidermal growth factor receptor family. Amplification of this gene has been shown to correlate with poor clinical prognosis for certain cancer patients. The monoclonal antibody A21 which directed against p185 specifically inhibits proliferation of tumor cells overexpressing p185, hence allows it to be a candidate for targeted therapy.
View Article and Find Full Text PDF