Publications by authors named "Wang Z"

Background: The clinical use of flattening filter free (FFF) radiotherapy has significantly increased in recent years due to its effective enhancement of dose rates and reduction of scatter dose. A proposal has been made to adjust the incident electron angle of the accelerator to expand the application of FFF beams in areas such as large planning target volumes (PTVs). However, the inherent softening characteristics and non-uniformity of lateral dose distribution in FFF beams inevitably lead to increased dosimetry errors, especially for ionization chambers widely used in clinical practice, which may result in serious accidents during FFF radiotherapy.

View Article and Find Full Text PDF

Currently, lack of ways to engineer specific and well-defined active sites in zeolitic imidazolate frameworks (ZIFs) limits our fundamental knowledge with respect to the mechanistic details for (photo)electrocatalytic hydrogen evolution reaction (HER). Here, we introduce the open metal sites into ZIFs through the selective ligand removal (SeLiRe) strategy, comprehensively characterize the altered structural and electronic features, and evaluate their role in HER. In-situ electrochemical analysis and X-ray absorption spectroscopy reveal the formation of high-valence HO-Zn-N2 sites through the binding of Zn-N2 with electrolyte hydroxide.

View Article and Find Full Text PDF

Background: Most existing deep learning-based registration methods are trained on single-type images to address same-domain tasks, resulting in performance degradation when applied to new scenarios. Retraining a model for new scenarios requires extra time and data. Therefore, efficient and accurate solutions for cross-domain deformable registration are in demand.

View Article and Find Full Text PDF

PARP inhibitors sensitize pancreatic ductal adenocarcinoma (PDAC) to radiation by inducing DNA damage and replication stress. These mechanisms also have the potential to enhance radiation-induced type I interferon (T1IFN)-mediated antitumoral immune responses. We hypothesized that the PARP inhibitor olaparib would also potentiate radiation-induced T1IFN to promote antitumor immune responses and sensitization of otherwise resistant PDAC to immunotherapy.

View Article and Find Full Text PDF

Bladder cancer (BLCA) remains a significant health risk despite advancements in medical science that have led to reduced incidence and death rates. While the molecular regulatory mechanisms of BLCA are not yet fully understood, HSPE1, a member of the heat shock protein family, is regarded as a reliable prognostic target for BLCA. Using data from The Cancer Genome Atlas (TCGA) database, the differential expression levels of HSPE1 and its relationship to GPX4 were examined.

View Article and Find Full Text PDF

Helicenes exhibit promise as active layer materials for circularly polarized light (CPL) detectors due to their strong chiroptical activity. However, their practical application is limited by the complicated synthesis and loosely solid-state packing. This study introduces a chiral induction strategy towards the synthesis of helicene derivatives, chiral tetrachlorinated diperylene diimides (()-4CldiPDI or ()-4CldiPDI).

View Article and Find Full Text PDF

Calcium/calmodulin-dependent serine protein kinase (CASK) interaction protein 1/2 (Caskin1/2) is essential neuronal synaptic scaffold protein in nervous system development. Knockouts of Caskin1/2 display severe deficits in novelty recognition and spatial memory. The tandem sterile alpha motif (SAM) domains of Caskin1/2, also conserved in their Drosophila homolog Ckn, are known to form homopolymers, yet their dynamic regulation mechanism remains unclear.

View Article and Find Full Text PDF

To ensure the success of genetic rescue, we must minimise the potential negative effects of outbreeding depression that may arise from selecting source populations. The difficulty in assessing the likelihood of outbreeding depression has hindered its consideration in endangered species conservation. However, genomic research offers feasible indications.

View Article and Find Full Text PDF

O3-NaNiFeMnO has attracted much attention as a cathode for sodium-ion batteries, because of its low cost and high sodium-ion storage capacity. However, its slow Na diffusion kinetics and harmful P3-O3' phase transition with severe bulk strain at high voltage leads to poor rate capability and fast capacity fading. Herein, we propose a multivariate doping strategy with Cu, Mg, and Ti ions to solve the above problems of the O3-NaNiFeMnO cathode.

View Article and Find Full Text PDF

Water confined in two-dimensional channels exhibits unique properties, such as rich morphology, specific phase transition and a low dielectric constant. In this work, molecular dynamics simulations have been used to study the water transport in two-dimensional graphene channels. The structures and dynamics of water under confinement show strong dependence on the channel length and thickness of the channels.

View Article and Find Full Text PDF

N1-methyladenosine (m1A) modification is an epigenetic change that occurs on RNA molecules, regulated by a suite of enzymes including methyltransferases (writers), demethylases (erasers), and m1A-recognizing proteins (readers). This modification significantly impacts the function of RNA and various biological processes by affecting the structure, stability, translation, metabolism, and gene expression of RNA. Thereby, m1A modification is closely associated with the occurrence and progression of cancer.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer-related deaths globally. Despite recent improvements in incidence and mortality rates, the prognosis of lung cancer remains dire.F-FDG PET/CT plays a vital role in diagnosing, staging, and monitoring the therapeutic efficacy of lung cancer.

View Article and Find Full Text PDF

CO RWGS reaction was considered to be a promising process for carbon dioxide conversion, however it retained a big challenge owing to methanation and metal sintering. Therefore, it was desperately needed to devise highly selective and stable catalyst. Herein, core-shell Ni/SiO@ZrO catalyst was successfully prepared via a combination of the wet impregnation and in-situ hydrothermal synthesis method, with ZrO as the coating shell.

View Article and Find Full Text PDF

Lower efficiency of agricultural inputs in the four conventional rice planting methods limits productivity and environmental benefits in Southwest China. Thus, we developed a machine-learning-based decision-making system for achieving optimal comprehensive benefits during rice production. Based on conventional benefits for achieving optimal benefits, implemented strategies in these planting methods: reducing N fertilizer by 16% while increasing seed inputs by 9% in mechanical transplanting (MT) method improved yield and environmental benefits; reducing N fertilizer and seed inputs by 10-12% in mechanical direct seeding (MD) method decreased environmental impacts; increasing N-K fertilizers and seed inputs by 15-33% in manual transplanting (MAT) method improved its comprehensive benefits by 7-14%; applying N-P-K fertilizer ratio of 2:1:2 in manual direct seeding (MAD) method enhanced yield.

View Article and Find Full Text PDF

Caffeine, a primary flavor component in tea, has been the subject of intense research. With the goal of shedding light on the complex regulatory processes governing caffeine biosynthesis in tea plants, liquid chromatography coupled with mass spectrometry (LC-MS), transcriptomics, and small RNA analyses were employed on diverse tea cultivars such as 'Jianghua Kucha' [including 'Xianghong 3' (XH3H) and 'Kucha 3' (KC3H)], 'Fuding Dabaicha' (FDDB), 'Yaoshan Xiulv' (YSXL), and 'Bixiangzao' (BXZ). The results showed that the caffeine level in 'Jianghua Kucha' was significantly higher than that in other tea plant cultivars.

View Article and Find Full Text PDF

Hypertension is a multifactorial condition influenced by both genetic and environmental factors. Protein disulfide isomerase family A member 3 (PDIA3) is a key endoplasmic reticulum protein which may contribute to increased blood pressure. However, the relationship between PDIA3 polymorphisms and hypertension remain unclear.

View Article and Find Full Text PDF

Implantable medical electronic devices (IMEDs) have attracted great attention and shown versatility for solving clinical problems ranging from real-time monitoring of physiological/ pathological states to electrical stimulation therapy and from monitoring brain cell activity to deep brain stimulation. The ongoing challenge is to select appropriate materials in target device configuration for biomedical applications. Currently, silk-based biomaterials have been developed for the design of diagnostic and therapeutic electronic devices due to their excellent properties and abundant active sites in the structure.

View Article and Find Full Text PDF

The aim of this study was to analyze the research hotspots and mechanisms of luteolin in tumor-related fields using bibliometric and bioinformatic approaches to guide future research. We conducted a comprehensive screening of all articles on luteolin and tumors in Web of Science from 2008 to 2023. The extracted words from these publications were visualized using VOSviewer, Scimago Graphica, and CiteSpace.

View Article and Find Full Text PDF

Mitochondrial damage caused by external stimuli, such as high glucose levels and inflammation, results in excessive reactive oxygen species (ROS) production. Existing antioxidants can only scavenge ROS and cannot address the root cause of ROS production, namely, abnormal mitochondria. To overcome this limitation, the study develops a piezoelectric synergistic drug-loaded nanosystem (BaTCG nanosystem) that targets mitochondria.

View Article and Find Full Text PDF

Efficient drug delivery is crucial for glaucoma patients. Flexible biomedical devices that enable sustained ocular drug delivery and can regulate the drug release rate according to physiological conditions are highly desirable for glaucoma treatments, addressing both low drug bioavailability and poor patient compliance from manual drug administration, and improving treatment outcomes. Inspired by the structure and reciprocating motion of fish dorsal fins, a drug-eluting contact lens based on deformable microstructures for non-invasive ocular surface drug delivery is developed.

View Article and Find Full Text PDF