High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
The escalating emissions of anthropogenic carbon dioxide (CO) and the pervasive issue of nondegradable plastic pollution underscore dual urgent challenges in pursuit of a sustainable society. Achieving such sustainability in the plastic industry, while effectively addressing these environmental concerns, necessitates the development and implementation of innovative strategies for the synthesis of biodegradable polymers utilizing CO as feedstocks. The technologies not only facilitate the mitigation of elevated atmospheric CO concentrations but also introduce a renewable carbon resource for polymer manufacturing.
View Article and Find Full Text PDFBackground: Lung cancer poses a significant global health challenge. Adaptive radiotherapy (ART) addresses uncertainties due to lung tumor dynamics. We aimed to investigate a comprehensively and systematically validated offline ART regimen with high clinical feasibility for lung cancer.
View Article and Find Full Text PDFReducing agents have been frequently utilized as electron donors for Fe(II) generation to resolve the sluggish Fe(III) reduction in Fenton-like reactions, while their irreversible consumption necessitates a robust catalytic system that utilizes green electron donors such as HO. In this study, we used annealed nanodiamonds (NDs) as a collection of model catalysts with different sp/sp ratios to investigate the roles of the molecular structure in boosting the Fenton-like reactions. The annealed NDs acted as an electron mediator to transfer electrons from HO to surface-adsorbed Fe(III) for Fe(II) generation as well as an electron donor for direct Fe(III) reduction, driving Fe(II)-catalyzed HO decomposition to produce massive hydroxyl radicals, demonstrating potential in the real-water matrixes.
View Article and Find Full Text PDFMoS/ZnInS flower-like heterostructures into porous carbon (PC@MoS/ZIS) are embedded. This ternary heterostructure demonstrates enhanced light absorption across a broad spectral range from 200 to 2500 nm. It features both Type-II and S-scheme dual heterojunction interfaces, which facilitate the generation, separation, and transfer of photoinduced carriers.
View Article and Find Full Text PDFInflammasome activation is implicated in diseases of aberrant angiogenesis such as age-related macular degeneration (AMD), though its precise role in choroidal neovascularization (CNV), a characteristic pathology of advanced AMD, is ill-defined. Reports on inhibition of inflammasome constituents on CNV are variable and the precise role of inflammasome in mediating pathological angiogenesis is unclear. Historically, subretinal injection of inflammasome agonists alone has been used to investigate retinal pigmented epithelium (RPE) degeneration, while the laser photocoagulation model has been used to study pathological angiogenesis in a model of CNV.
View Article and Find Full Text PDFCatalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement. Unfortunately, this method is significantly hindered in practical applications by the low efficiency and difficult recovery of the catalysts in a powdery form. Herein, a three-dimensional (3D) framework of Fe-incorporated NiS nanosheets in-situ grown on Ni foam (Fe-NiS@NF) was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate (PMS) oxidation of organic compounds in water.
View Article and Find Full Text PDFOrganic contaminants with lower Hammett constants are typically more prone to being attacked by reactive oxygen species (ROS) in advanced oxidation processes (AOPs). However, the interactions of an organic contaminant with catalytic centers and participating ROS are complex and lack an in-depth understanding. In this work, we observed an abnormal phenomenon in AOPs that the degradation of electron-rich phenolics, such as 4-methoxyphenol, acetaminophen, and 4-presol, was unexpectedly slower than electron-deficient phenolics in a Mn(II)/nitrilotriacetic acid/peroxymonosulfate (Mn(II)/NTA/PMS) system.
View Article and Find Full Text PDFManganese dioxide (MnO), renowned for its abundant natural crystal phases, emerges as a leading catalyst candidate for the degradation of pollutants. The relationship between its crystal phase and catalytic activity, particularly for periodate activation, has remained both ambiguous and contentious. This study delineates the influence of various synthetic MnO phase structures on their capabilities in catalyzing periodate-assisted pollutant oxidation.
View Article and Find Full Text PDFThe presence and induced secondary reactions of natural organic matter (NOM) significantly affect the remediation efficacy of in situ chemical oxidation (ISCO) systems. However, it remains unclear how this process relates to organic radicals generated from reactions between the NOM and oxidants. The study, for the first time, reported the vital roles and transformation pathways of carbon-centered radicals (CCR) derived from NOM in activated persulfate (PS) systems.
View Article and Find Full Text PDFConspectusGraphitic carbon nitride-based materials have emerged as promising photocatalysts for a variety of energy and environmental applications owing to their "earth-abundant" nature, structural versatility, tunable electronic and optical properties, and chemical stability. Optimizing carbon nitride's physicochemical properties encompasses a variety of approaches, including the regulation of inherent structural defects, morphology control, heterostructure construction, and heteroatom and metal-atom doping. These strategies are pivotal in ultimately enhancing their photocatalytic activities.
View Article and Find Full Text PDFAlcohols are promising fuels for direct alcohol fuel cells and are common scavengers to identify reactive oxygen species (ROS) in electro-Fenton (EF) systems. However, the side impacts of alcohols on oxygen reduction reactions and ROS generation are controversial due to the complex interactions between electrodes and alcohol-containing electrolytes. Herein, we employed synchrotron-Fourier-transform infrared spectroscopy and electron paramagnetic resonance technologies to directly observe the changes of chemical species and electrochemical properties on the electrode surface.
View Article and Find Full Text PDFRadiation therapy plays a crucial role in cancer treatment, necessitating precise delivery of radiation to tumors while sparing healthy tissues over multiple days. Computed tomography (CT) is integral for treatment planning, offering electron density data crucial for accurate dose calculations. However, accurately representing patient anatomy is challenging, especially in adaptive radiotherapy, where CT is not acquired daily.
View Article and Find Full Text PDFHighly active biochar has great application potential in heterogeneous catalysis and adsorptive processes. The complexity of carbonization process makes it difficult to construct target active sites. This work put forward a reactive descriptor based on pyrolysis parameters and intrinsic composition of biomass.
View Article and Find Full Text PDFDevelopment of low-cost, efficient, and stable electrocatalysts for oxygen evolution reaction (OER) is the key issue for a large-scale hydrogen production. Recently, in-situ corrosion of stainless steel seems to be a feasible technique to obtain an efficient OER electrode, while a wide variety of corrosive agents often lead to significant difference in catalytic performance. Herein, we synthesized Ni-Fe based nanomaterials with OER activity through a facile one-step hydrothermal etching method of stainless steel mesh, and investigated the influence of three halogen oxyacid salts (KClO, KBrO, KIO) on water oxidation performance.
View Article and Find Full Text PDFPorous carbon materials are highly desirable for removing benzene due to their low energy for capture and regeneration. Research has demonstrated that narrow microporous volume is crucial for effective adsorption of benzene at ultra-low concentration. Unfortunately, achieving directional increase in the narrow microporous volume in porous carbon remains a challenge.
View Article and Find Full Text PDFHigh-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways.
View Article and Find Full Text PDF