The performance of narrow-bandgap (NBG) perovskite solar cells (PSCs) is limited by the severe nonradiative recombination and carrier transport barrier at the electron selective interface. Here, we reveal the importance of the molecular orientation for effective defect passivation and protection for Sn at the perovskite/C interface. We constructed an internally self-anchored dual-passivation (ISADP) layer, where the orientation of PCBM can be significantly enhanced by the interaction between ammonium and carbonyl groups.
View Article and Find Full Text PDFIn order to solve the water and gas discharge hazard caused by gob water and harmful gases (such as CO), the method of grouting overburden fractures is adopted to achieve the purpose of safe and efficient mining production in coal mines. This paper carries out the experimental research on the permeability reduction effect of grouting in fractured rock mass, expounds the relationship between gas flow rate and pressure gradient, seepage pressure and permeability, confining pressure and permeability, and analyzes the permeability change law of fractured rock mass before and after grouting. Besides, the grouting migration and permeability reduction model of fractured fine-grained sandstone is constructed by combining grouting test and numerical simulation, which reveals the dynamic evolution law of rock mass permeability in the grouting process.
View Article and Find Full Text PDFMesh repair is a long-standing challenge in computer graphics and related fields. Converting defective meshes into watertight manifold meshes can greatly benefit downstream applications such as geometric processing, simulation, fabrication, learning, and synthesis. In this work, by assuming the model is visually correct, we first introduce three visual measures for visibility, orientation, and openness, based on ray-tracing.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
August 2024
Voxel-based 3D convolutional neural networks (CNNs) have been applied to predict protein-ligand binding affinity. However, the memory usage and computation cost of these voxel-based approaches increase cubically with respect to spatial resolution and sometimes make volumetric CNNs intractable at higher resolutions. Therefore, it is necessary to develop memory-efficient alternatives that can accelerate the convolutional operation on 3D volumetric representations of the protein-ligand interaction.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) are potential antibacterial material, and their antibacterial activity in aqueous solutions depends on efficient surfactants to create strong interactions between well-dispersed SWCNTs and bacterial cells. Here, we designed and synthesized a new family of cationic surfactants by introducing different positively charged hydrophilic heads, i.e.
View Article and Find Full Text PDFα-RuCl_{3} is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α-RuCl_{3} undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the ab plane.
View Article and Find Full Text PDFWe use nuclear magnetic resonance (NMR), high-resolution x-ray, and neutron scattering studies to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As(1-x)P(x)2. Previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x=0.3.
View Article and Find Full Text PDF