Publications by authors named "Wang Hee Lee"

The aberrant secretion of proinflammatory cytokines by immune cells is the principal cause of inflammatory diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Toll-like receptor 7 (TLR7) and TLR9, sequestered to the endosomal compartment of dendritic cells and macrophages, are closely associated with the initiation and progression of these diseases. Therefore, the development of drugs targeting dysregulated endosomal TLRs is imperative to mitigate systemic inflammation.

View Article and Find Full Text PDF

Procambarus clarkii is a notorious invasive species that has led to ecological concerns owing to its high viability and rapid reproduction. South Korea, a country exposed to a high risk of introduction of invasive species due to active international trade, has suffered from recent massive invasions by invasive species, necessitating the evaluation of potential areas requiring intensive monitoring. In this study, we developed two different types of species distribution models, CLIMEX and random forest, for P.

View Article and Find Full Text PDF

Inflammatory skin diseases represent a significant health concern, affecting approximately 20-25% of the global population. These conditions not only reduce an individual's quality of life but also impose a huge burden on both humanity and society. However, addressing these challenges is hindered by their chronic nature, insufficient therapeutic effectiveness, and the propensity for recurrence and adverse side effects.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the potential of using microbial metabolism to convert sunlight and organic carbon into sustainable energy, highlighting the current limitations in developing effective microbial platforms for fuel production.
  • A new microbial device inspired by water lily leaves is introduced, which functions at the air-water interface, enhancing the supply and capture of gases while optimizing sunlight delivery.
  • The device, utilizing the microorganism Rhodopseudomonas parapalustris, demonstrates significantly improved hydrogen production rates compared to traditional devices, showcasing its promise for efficient and sustainable solar energy conversion.
View Article and Find Full Text PDF

Pierce's disease (PD) is a serious threat to grape production in Europe. This disease is caused by and is mediated by insect vectors, suggesting its high potential for spread and necessity for early monitoring. In this study, hence, potential distribution of Pierce's disease varied with climate change and was spatially evaluated in Europe using ensemble species distribution modeling.

View Article and Find Full Text PDF

The western conifer seed bug (WCSB) (Heidemann) (Heteroptera: Coreidae) is a pest insect that causes significant losses of coniferous trees worldwide. In this study, we sought to project the potential distribution of the WCSB based on dual CLIMEX modeling and random forest (RF) analysis to obtain basic data for WCSB monitoring strategies. The CLIMEX model, a semimechanistic niche model that responds to climate-based environmental parameters, is a species distribution model that focuses on regional climatic suitability.

View Article and Find Full Text PDF

Despite advances in a wide range of device applications of hydrogels, including implantable ones, a method for deploying patterned hydrogel devices into the body in a minimally-invasive manner is not available yet. However, in situ patterning of the hydrogel in vivo has an obvious advantage, by which incision surgery for implantation of the hydrogel device can be avoided. Here, a minimally-invasive and in vivo hydrogel patterning method for in situ fabrication of implantable hydrogel devices is presented.

View Article and Find Full Text PDF

Storing solar energy in chemical bonds aided by heterogeneous photocatalysis is desirable for sustainable energy conversion. Despite recent progress in designing highly active photocatalysts, inefficient solar energy and mass transfer, the instability of catalysts and reverse reactions impede their practical large-scale applications. Here we tackle these challenges by designing a floatable photocatalytic platform constructed from porous elastomer-hydrogel nanocomposites.

View Article and Find Full Text PDF

Although conventional topical approaches for treating psoriasis have been offered as an alternative, there are still unmet medical needs such as low skin-penetrating efficacy and off-target adverse effects. A hyaluronic acid nanoparticle (HA-NP) formed by self-assembly of HA-hydrophobic moiety conjugates has been broadly studied as a nanocarrier for long-term and target-specific delivery of drugs, owing to their excellent physicochemical and biological characteristics. Here, we identify HA-NPs as topical therapeutics for treating psoriasis using skin penetration studies and psoriasis animal models.

View Article and Find Full Text PDF

The spongy moth, Lymantria dispar, is a pest that damages various tree species throughout North America and Eurasia, has recently emerged in South Korea, threatening local forests and landscapes. The establishment of effective countermeasures against this species' outbreak requires predicting its potential distribution with climate change. In this study, we used species distribution models (CLIMEX and MaxEnt) to predict the potential distribution of the spongy moth and identify areas at risk of exposure to a sustained occurrence of the pest by constructing an ensemble map that simultaneously projected the outcomes of the two models.

View Article and Find Full Text PDF

We targeted three major species (, , and ) and evaluated their potential distributions using MaxEnt. The results showed that most Asian countries and northern Australia would be suitable for at least one of these pest species, and climate change will expand their habitat northward. All of the developed models were evaluated to be excellent with AUC, TSS, and OR10%.

View Article and Find Full Text PDF

To investigate insect and plant community relationships in riparian zones, terrestrial insect communities were compared in plant communities in the riparian zone of the Miho River, Korea. The sweep netting method was used to sample insects in 50 m transects in three herbaceous plant communities. In 2020, each plant community-, , and -was swept 100 times (50 sweeps × 2).

View Article and Find Full Text PDF

Background: Changes in dietary patterns have led to a decrease in rice consumption, raising demands for the cultivation of alternative crops that meet the current requirements. Potatoes are highly productive and can be stored for a relatively long period, thereby ensuring adequate income for farmers; however, optimal cultivation is necessary to maximize yield.

Objective: This study proposes optimal cultivation regions for potato considering climate and soil conditions.

View Article and Find Full Text PDF

The demand for rapid and nondestructive methods to determine chemical components in food and agricultural products is proliferating due to being beneficial for screening food quality. This research investigates the feasibility of Fourier transform near-infrared (FT-NIR) and Fourier transform infrared spectroscopy (FT-IR) to predict total as well as an individual type of isoflavones and oligosaccharides using intact soybean samples. A partial least square regression method was performed to develop models based on the spectral data of 310 soybean samples, which were synchronized to the reference values evaluated using a conventional assay.

View Article and Find Full Text PDF

Injectable hydrogels show high potential for biomedical applications owing to their distinctive mode of administration into the human body. In this study, we propose a material design strategy for developing a multifunctional injectable hydrogel with good adhesiveness, stretchability, and bioresorbability. Its multifunctionality, whereupon multiple reactions occur simultaneously during its injection into the body without requiring energy stimuli and/or additives, was realized through meticulous engineering of bioresorbable precursors based on hydrogel chemistry.

View Article and Find Full Text PDF

Food authenticity is one of the largest concerns in recent days. As kimchi has been a global food, its production origin has been important issue, particularly due to the large import from China. Among the potential methods, electronic nose which can measure volatile compounds in foods is considered to be a powerful device for identifying country of production.

View Article and Find Full Text PDF

Invasion of alien species facilitated by climate change and human assistant is one of global threats that cause irreversible damages on the local flora and fauna. One of these issued species, Vespa velutina nigrithorax du Buysson, 1905 (Hymenoptera:Vespidae), is a significant threat to entomofauna, including honeybees, in the introduced regions. This wasp is still expanding its habitats, prioritizing the development of a reliable species distribution model based on recently updated occurrence data.

View Article and Find Full Text PDF

In the diagnosis and treatment of brain diseases, implantable devices have immense potential for intracranial sensing of brain activity and application of controlled therapy for providing feedback to the sensing. Flexible materials are preferred for implantable devices, as they can minimise implanted device-brain tissue mechanical mismatch. Moreover, biodegradable implantable devices can reduce potential immunological side-effects.

View Article and Find Full Text PDF

The growth of plants and their glucosinolate content largely depend on the cultivation environment; however, there are limited reports on the optimization of ambient environmental factors for kale grown in plant factories. This study was conducted to investigate the effects of temperature, relative humidity, and the carbon dioxide (CO) concentration on kale growth and glucosinolate content in different growth stages of cultivation in a plant factory. Kale was grown under different temperatures (14, 17, 20, 23, and 26 °C), relative humidities (45, 55, 65, 75, and 85%), and CO concentrations (400, 700, 1000, 1300, and 1600 ppm) in a plant factory.

View Article and Find Full Text PDF

The popularity of senior-friendly food has been increasing as the world enters the age of an aging society. It is required that senior-friendly food products are processed with the new concept of processing techniques that do not destroy the nutritional and sensory values. Ohmic heating can be an alternative to conventional heating methods for processing senior-friendly food with retaining excellent taste and quality because of less destruction of nutrients in the food.

View Article and Find Full Text PDF

Drug-induced cardiotoxicity is a major problem in drug discovery. Many approaches to efficient drug screening have been developed, including animal testing in vivo and cell testing in vitro. However, due to intrinsic difference between species, animal-based toxicity testing cannot comprehensively determine the potential side effects in subsequent human clinical trials.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) play a fundamental role in the inflammatory response against invading pathogens. However, the dysregulation of TLR-signaling pathways is implicated in several autoimmune/inflammatory diseases. Here, we show that a novel small molecule TLR-inhibitor (TAC5) and its derivatives TAC5-a, TAC5-c, TAC5-d, and TAC5-e predominantly antagonized poly(I:C) (TLR3)-, imiquimod (TLR7)-, TL8-506 (TLR8)-, and CpG-oligodeoxynucleotide (TLR9)-induced signaling pathways.

View Article and Find Full Text PDF

Hydrogels are widely implemented as key materials in various biomedical applications owing to their soft, flexible, hydrophilic, and quasi-solid nature. Recently, however, new material properties over those of bare hydrogels have been sought for novel applications. Accordingly, hydrogel nanocomposites, i.

View Article and Find Full Text PDF

Obesity, a major risk factor for type 2 diabetes and cardiovascular diseases, is characterized by an abnormal expansion of adipose tissue. Herein, we investigated the potential of hyaluronic acid nanoparticles (HA-NPs) as therapeutics to treat obesity-related diseases by assessing the in vitro and in vivo effects of HA-NPs on adipogenesis and lipogenesis. Treatment of 3T3-L1 preadipocytes with HA-NPs resulted in a dose-dependent suppression of adipogenesis and lipid accumulation, and decreased the expression of key adipogenic and lipogenic regulators.

View Article and Find Full Text PDF

Despite being crucial for combating microbes, paradoxical Toll-like receptors (TLRs) signaling have been associated with the aggravation of multiple immune disorders such as systemic lupus erythematosus, psoriasis, rheumatoid arthritis, and nonalcoholic steatohepatitis. The stoichiometry and precise arrangement of the interaction of adapters (via their Toll/interleukin-1 receptor [TIR] domains) are indispensable for the activation of TLRs and of downstream signaling cascades. Among adapters, plasma membrane-anchored MyD88 adaptor-like (MAL) has the potential for BB-loop-mediated self-oligomerization and interacts with other TIR domain-containing adaptors through αC and αD helices.

View Article and Find Full Text PDF