We report an ultrathin NiOx catalyzed Si np(+) junction photoanode for a stable and efficient solar driven oxygen evolution reaction (OER) in water. A stable semi-transparent ITO/Au/ITO hole conducting oxide layer, sandwiched between the OER catalyst and the Si photoanode, is used to protect the Si from corrosion in an alkaline working environment, enhance the hole transportation, and provide a pre-activation contact to the NiOx catalyst. The NiOx catalyzed Si photoanode generates a photocurrent of 1.
View Article and Find Full Text PDFNucleus pulposus (NP) tissue engineering has been proposed as a novel biological treatment for early-stage intervertebral disc degeneration. In this study, a novel functional self-assembling peptide PKP was first designed by linking the short functional motif of bone morphogenetic protein-7 (BMP7) to the C-terminal of RADA16-I, and another new functional self-assembling peptide was obtained by mixing RKP with RADA16-I. Then, the biocompatibilities and bioactivities of RKP and RAD-RKP for human degenerated nucleus pulposus cells (hNPCs) were studied in vitro.
View Article and Find Full Text PDFThis study examined the Pb content and Pb isotopic composition in a sediment core taken from the East China Sea (ECS) shelf, and it was observed that since 2003 the increasing anthropogenic Pb inputs have impacted as far as the ECS shelf sediments. The ECS shelf sediments were generally characterized with low bulk Pb contents (12.5-15.
View Article and Find Full Text PDFWe report a facile and large-scale fabrication of three-dimensional (3D) ZnO/CuO heterojunction branched nanowires (b-NWs) and their application as photocathodes for photoelectrochemical (PEC) solar hydrogen production in a neutral medium. Using simple, cost-effective thermal oxidation and hydrothermal growth methods, ZnO/CuO b-NWs are grown on copper film or mesh substrates with various ZnO and CuO NWs sizes and densities. The ZnO/CuO b-NWs are characterized in detail using high-resolution scanning and transmission electron microscopies exhibiting single-crystalline defect-free b-NWs with smooth and clean surfaces.
View Article and Find Full Text PDFThe biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability.
View Article and Find Full Text PDFObject: While many centers place bilateral deep brain stimulation (DBS) systems simultaneously, unilateral subthalamic nucleus (STN) DBS followed by a staged contralateral procedure has emerged as a treatment option for many patients. However, little is known about whether the preoperative phenotype predicts when staged placement of a DBS electrode in the opposite STN will be required. The authors aimed to determine whether preoperative clinical phenotype predicts early staged placement of a second STN DBS electrode in patients who undergo unilateral STN DBS for Parkinson disease (PD).
View Article and Find Full Text PDFWe report the systematic study of 3D ZnO/Si branched nanowire (b-NW) photoelectrodes and their application in solar water splitting. We focus our study on the correlation between the electrode design and structures (including Si NW doping, dimension of the trunk Si and branch ZnO NWs, and b-NW pitch size) and their photoelectrochemical (PEC) performances (efficiency and stability) under neutral conditions. Specifically, we show that for b-NW electrodes with lightly doped p-Si NW core, larger ZnO NW branches and longer Si NW cores give a higher photocathodic current, while for b-NWs with heavily doped p-Si NW trunks smaller ZnO NWs and shorter Si NWs provide a higher photoanodic current.
View Article and Find Full Text PDFAn amylopectin wrapped graphene oxide-sulfur composite was prepared to construct a 3-dimensionally cross-linked structure through the interaction between amylopectin and graphene oxide, for stabilizing lithium sulfur batteries. With the help of this cross-linked structure, the sulfur particles could be confined much better among the layers of graphene oxide and exhibited significantly improved cyclability, compared with the unwrapped graphene oxide-sulfur composite. The effect of the electrode mass loading on electrochemical performance was investigated as well.
View Article and Find Full Text PDFHuman degenerative disc disease (DDD) is characterized by progressive loss of human nucleus pulposus (HNP) cells and extracellular matrix, in which the massive deposition are secreted by HNP cells. Cell therapy to supplement HNP cells to degenerated discs has been thought to be a promising strategy to treat DDD. However, obtaining a large quality of fully functional HNP cells has been severely hampered by limited proliferation capacity of HNP cells in vitro.
View Article and Find Full Text PDFWe report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage.
View Article and Find Full Text PDFData from 997 pediatric LT recipients were used to model demographic and medical variables as predictors of lower levels of HRQOL. Data were collected through SPLIT FOG project. Patients were between 2 and 18 yr of age and survived LT by at least 12 months.
View Article and Find Full Text PDFWe report the fabrication of three-dimensional (3D) branched nanowire (NW) heterostructures, consisting of periodically ordered vertical Si NW trunks and ZnO NW branches, and their application for solar water splitting. The branched NW photoelectrodes show orders of magnitudes higher photocurrent compared to the bare Si NW electrodes. More interestingly, selective photoelectrochemical cathodic or anodic behavior resulting in either solar water oxidation or reduction was achieved by tuning the doping concentration of the p-type Si NW core.
View Article and Find Full Text PDFWe present hierarchical architecture MWCNT (multi-walled carbon nanotubes)@meso C core-shell nanostructures as a carbon matrix for effective trapping of sulfur/polysulfides as a cathode material for Li-S batteries. The unique structure of MWCNT@meso C core-shell nanocomposites was achieved by using a sol-gel coating method followed by nanocasting. By infiltrating sulfur into the matrix, S/MWCNT@meso C core-shell nanocomposites were achieved.
View Article and Find Full Text PDFZhongguo Zhen Jiu
February 2013
Through the analysis on the methods of medicinal paste preparation, the irritation of skin to medicine and the plaster materials adopted in acupoint plaster therapy for the prevention of winter-attacked disease in summer, the acupoint plaster materials and devices were improved. According to the differences in age, illness condition, acupoint and medicinal irritation of patients, the high-dosage, moderate-dosage and low-dosage series of medicine were prepared in proportion; 2. 5 mL and 5 mL syringes were manually reconstructed as the pushers for the delivery of the medicine paste of different specifications.
View Article and Find Full Text PDFSeed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation.
View Article and Find Full Text PDFWe have previously explored the possibilities of allogenic intervertebral disc (IVD) curing disc degeneration disease in clinical practice. The results showed that the motion and stability of the spinal unit was preserved after transplantation of allogenic IVD in human beings at 5-year follow-up. However, mild degeneration was observed in the allogenic transplanted IVD cases.
View Article and Find Full Text PDFWe present a study of a transition metal oxide composite modified n-Si photoanode for efficient and stable water oxidation. This sputter-coated composite functions as a protective coating to prevent Si from photodecomposition, a Schottky heterojunction, a hole conducting layer for efficient charge separation and transportation, and an electrocatalyst to reduce the reaction overpotential. The formation of mixed-valence oxides composed of Ni and Ru effectively modifies the optical, electrical, and catalytic properties of the coating material, as well as the interfaces with Si.
View Article and Find Full Text PDFBackground: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes.
View Article and Find Full Text PDFFront Microbiol
December 2012
The transition element molybdenum (Mo) possesses diverse valances (+II to +VI), and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI) predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) and influenza are important pediatric community-acquired (CA) and hospital-acquired (HA) pathogens. The occurrence of pandemic (H1N1) 2009 influenza resulted in additional efforts to intensify infection control (IC) strategies. We detail the impact of IC strategies between 2003 and 2010 on influenza and RSV.
View Article and Find Full Text PDFTo enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions.
View Article and Find Full Text PDFUsing Pt(3)Fe nanoparticles as an example, a surfactant-free Np-KCl matrix method (Np stands for nanoparticle) is developed for the synthesis of nanoparticles with controlled size and structure. In this method, the Np-KCl assembly is formed in a one-pot reduction in THF at room temperature. KCl is an insoluble byproduct of the reaction and serves as a matrix that traps the nanoparticles to avoid particle agglomeration and to control the coalescence of nanoparticles during thermal annealing up to 600 °C.
View Article and Find Full Text PDFA promising electrocatalyst prototype of low Pt mole fraction, intermetallic nanoparticles of Cu(3)Pt, has been prepared using a simple impregnation-reduction method, followed by a post heat-treatment. Two dealloying methods (electrochemical and chemical) were implemented to control the atomic-level morphology and improve performance for the oxygen reduction reaction (ORR). The morphology and elemental composition of the dealloyed nanoparticles were characterized at angstrom resolution using an aberration-corrected scanning transmission electron microscope equipped with an electron energy loss spectrometer.
View Article and Find Full Text PDFObjectives: To investigate whether the intervention of nucleus pulposus (NP) cells or human telomerase reverse transcriptase (hTERT) gene-transfected NP cells can prevent the degeneration process after allograft total disc transplantation.
Methods: Eighteen canine lumbar intervertebral discs were obtained from five canines and cryopreserved in liquid nitrogen. Canine nucleus pulposus cells were isolated and transduced with recombinant adeno-associated virus (rAAV)-hTERT.
A BAFF polymorphism is associated with asthma exacerbations and serum BAFF levels. BAFF expression in vivo increases in natural rhinovirus infection. BAFF may play a role in airway antiviral immunity and impact asthma exacerbation rates.
View Article and Find Full Text PDF