Publications by authors named "Wang Chunming"

A novel phosphorescent chemodosimeter material Ruphen-1 based on a Ru(ii) complex has been designed and developed by introducing Hg-promoted desulfurization and intramolecular cyclic guanylation of thiourea reaction into the luminophor. Ruphen-1 not only possessed a longer excitation wavelength, large Stokes shift and good water solubility, but also exhibited high selectivity and sensitivity only toward Hg with a rapid turn-on phosphorescence response in an aqueous system over a wide range of pH (4.0-9.

View Article and Find Full Text PDF

A nanoscale catalyst, solid acid SO4(2-)/Fe2O3 with both Lewis and Brønsted acidity was found to effectively hydrolyze hemicellulose while keeping cellulose and lignin inactive, and selective hydrolysis of hemicellulose from wheat straw by this catalyst was also confirmed. The factors that significantly affected hydrolysis process were investigated with response surface methodology, and the optimum conditions for time, temperature, and ratio of wheat straw to catalyst (w/w) were calculated to be 4.10h, 141.

View Article and Find Full Text PDF

The adverse effects of nanomaterials on the living system have attracted considerable attention in the past few years. Such effects may come from either the core nanomaterials or the chemical agents used to modify the nanomaterials - the latter being largely overlooked. In a free form, these modifying agents might have little impact on living cells; however, they may exhibit distinct biological effects when they assemble into a larger dimension.

View Article and Find Full Text PDF

The biomacromolecule, gelatin, has increasingly been used in biomedicine-beyond its traditional use in food and cosmetics. The appealing advantages of gelatin, such as its cell-adhesive structure, low cost, off-the-shelf availability, high biocompatibility, biodegradability and low immunogenicity, among others, have made it a desirable candidate for the development of biomaterials for tissue engineering and drug delivery. Gelatin can be formulated in the form of nanoparticles, employed as size-controllable porogen, adopted as surface coating agent and mixed with synthetic or natural biopolymers forming composite scaffolds.

View Article and Find Full Text PDF

Transition-metal dichalcogenide (TMD) monolayer alloys are a branch of two-dimensional (2D) materials which can have large-range band gap tuning as the composition changes. Synthesis of 2D TMD monolayer alloys with controlled composition as well as controlled domain size and edge structure is of great challenge. In the present work, we report growth of MoS2(1-x)Se2x monolayer alloys (x = 0.

View Article and Find Full Text PDF

Boron (B) is essential for plant growth, and B deficiency causes severe losses in crop yield. Here we isolated and characterized a rice (Oryza sativa L.) mutant named dwarf and tiller-enhancing 1 (dte1), which exhibits defects under low-B conditions, including retarded growth, increased number of tillers and impaired pollen fertility.

View Article and Find Full Text PDF

A new species of free-living marine nematodes, Ptycholaimellus longibulbus sp. nov., is described from the East China Sea.

View Article and Find Full Text PDF

A novel iridium(III) complex-based probe Ir4-1 has been designed and synthesized conveniently by incorporating the chemodosimeter into phosphorescent luminophor, which displayed ratiometric luminescence change from yellowish-green to reddish-yellow only toward Hg(2+) ions in aqueous media via desulfurization and intramolecular cyclization with a broad pH range of 5-10. The phosphorescent chemodosimeter could eliminate effectively the signal interference from the short-lived fluorescent background, and the signal-to-noise ratio of the detection was improved distinctly by using time-resolved photoluminescence technique. Furthermore, the mechanism of phosphoresce change of the chemodosimeter was analyzed in detail by time-dependent density functional theory (TD-DFT) calculations, and the probe with long-wavelength emission could be applied to label cells and monitor intracellular Hg(2+) effectively by luminescence ratio imaging.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) plays a central role in the pathogenesis of inflammatory bowel disease (IBD). Anti-TNF-α therapies have shown protective effects against colitis, but an efficient tool for target suppression of its secretion - ideally via oral administration - remains in urgent demand. In the colon tissue, TNF-α is mainly secreted by the colonic macrophages.

View Article and Find Full Text PDF

Floral organ identity in plants is controlled by floral homeotic A/B/C/D/E-class genes. In Arabidopsis thaliana, several epigenetic repressors that regulate these floral organ identity genes have been characterized. However, the roles of epigenetic factors in rice floral development have not been explored in detail.

View Article and Find Full Text PDF

A novel Ru(II) complex-based phosphorescent probe Rubpy-1 was designed and synthesized conveniently by incorporating of chemodosimeter into the luminophor, which exhibits good water solubility, longer excitation wavelength, and rapid turn-on phosphorescent response only toward Hg(2+) in aqueous system under physiological pH. The spectral response mechanism and Hg(2+)-promoted structure change of the chemodosimeter were analyzed in detail by theoretical calculations and electrospray ionization mass spectrometry. When time-resolved photoluminescence techniques were used, the Rubpy-1 could eliminate effectively the signal interference from the short-lived background fluorescence in complicated media, accompanied by the significant improvement of the signal-to-noise ratio and the accuracy of the detection.

View Article and Find Full Text PDF

Carrageenan (CRG) is a family of natural polysaccharides derived from seaweeds and has widely been used as food additives. In the past decade, owing to its attractive physicochemical properties, CRG has been developed into versatile biomaterials vehicles for drug delivery. Nevertheless, studies also emerged to reveal its adverse effects on the biological system.

View Article and Find Full Text PDF

Rice blast caused by Magnaporthe oryzae poses a major threat to rice production worldwide. The utilization of host resistance (R) genes is considered to be the most effective and economic means to control rice blast. Here, we show that the japonica landrace Yangmaogu (YMG) displays a broader spectrum of resistance to blast isolates than other previously reported broad-spectrum resistant (BSR) cultivars.

View Article and Find Full Text PDF

Strategies to modify nanoparticles with biological ligands for targeted drug delivery in vivo have been widely studied but met with limited clinical success. A possible reason is that, in the blood circulation, serum proteins could rapidly form a layer of protein "corona" on the vehicle surface, which might block the modified ligands and hamper their targeting functions. We speculate that strategies for drug delivery can be designed based upon elegant control of the corona formation on the vehicle surfaces.

View Article and Find Full Text PDF

Pentraxin-3 (PTX3) is an inflammatory marker thought to be more specific to cardiovascular inflammation than C-reactive protein (CRP). Our aim was to assess the prognostic value of PTX3 in patients with stable coronary artery disease (CAD) after drug eluting stent (DES) implantation. Plasma PTX3 levels were measured before percutaneous coronary intervention (PCI) and at 24 h post-PCI in 596 consecutive patients with stable CAD.

View Article and Find Full Text PDF

A biological system is essentially an elegant assembly of polymeric nanostructures. The polymers in the body, biomacromolecules, are both building blocks and versatile messengers. We propose that non-biologically derived polymers can be potential therapeutic candidates with unique advantages.

View Article and Find Full Text PDF

The significance of R&D capabilities of China has become increasingly important as an emerging force in the context of globalization of pharmaceutical research and development (R&D). While China has prospered in its R&D capability in the past decade, how to integrate the rising pharmaceutical R&D capability of China into the global development chain for innovative drugs remains challenging. For many multinational corporations and research organizations overseas, their attempt to integrate China's pharmaceutical R&D capabilities into their own is always hindered by policy constraints and reluctance of local universities and pharmaceutical firms.

View Article and Find Full Text PDF

A novel "turn-on" phosphorescent chemodosimeter based on a cyclometalated Ir(III) complex has been designed and synthesized, which displays high selectivity and sensitivity toward Hg(2+) in aqueous media with a broad pH range of 4-10. Furthermore, by time-resolved photoluminescence techniques, some interferences from the short-lived background fluorescence can be eliminated effectively and the signal-to-noise ratio of the emission detection can be improved distinctly by using the chemodosimeter. Finally, the chemodosimeter can be used to monitor Hg(2+) effectively in living cells by confocal luminescence imaging.

View Article and Find Full Text PDF

An artificial nucleic acid analogue capable of self-assembly into duplex merely through hydrophobic interactions is presented. The replacement of Watson-Crick hydrogen bonding with strictly hydrophobic interactions has the potential to confer new properties and facilitate the construction of complex DNA nanodevices. To study how the hydrophobic effect works during the self-assembly of nucleic acid bases, we have designed and synthesized a series of fluorinated nucleic acids (FNA) containing 3,5-bis(trifluoromethyl) benzene (F) and nucleic acids incorporating 3,5-dimethylbenzene (M) as hydrophobic base surrogates.

View Article and Find Full Text PDF

Tumour-associated macrophages (TAMs) are a set of macrophages residing in the tumour microenvironment. They play essential roles in mediating tumour angiogenesis, metastasis and immune evasion. Delivery of therapeutic agents to eliminate TAMs can be a promising strategy for cancer immunotherapy but an efficient vehicle to target these cells is still in pressing need.

View Article and Find Full Text PDF

Jatropha curcas is a new promising bioenergy crop due to the high oil content in its seeds that can be converted into biodiesel. Seed size, a major determinant of Jatropha oil yield, is a target trait for Jatropha breeding. Due to the vital roles of phytohormone auxin in controlling seed and fruit development, we screened key genes in auxin pathway including ARF and IAA families and downstream effectors to identify candidate genes controlling seed size in Jatropha.

View Article and Find Full Text PDF

Next-generation biomaterials are expected to possess both desirable mechanical features and unique biological functions. Recently, two plant-derived glucomannans (GMs)-Konjac glucomannan (KGM) and the polysaccharide of Bletilla striata (BSP)-have emerged as new sources for development of biomaterials. They have been fabricated into drug delivery vehicles and wound healing dressings in varying shapes and sizes, and demonstrated strong gelling properties, high biocompatibility and remarkable convenience for processing and modification.

View Article and Find Full Text PDF

The mechanism of the rate of living-free radical theory suggests that higher rate of oxidative metabolism results from greater rate of mitochondria oxidative phosphorylation, leading to a consequent increase in production of free radicals. However, the relation between metabolic rate and oxidative stress is tissue dependent in animals acclimated to cold temperatures. Here we examined oxidative stress, reflected by changes of antioxidant activity and other related markers, in striped hamsters acclimated to moderate cold (15°C), room (23°C) or warm temperature (30°C) for 6 weeks, by which either higher or lower metabolic rate was induced experimentally.

View Article and Find Full Text PDF

Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a(+)O4(+) OPCs relative to CD133(+)CD140a(-) neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.

View Article and Find Full Text PDF

Mutation of the AM1 gene causes an albino midrib phenotype and enhances tolerance to drought in rice K(+) efflux antiporter (KEA) genes encode putative potassium efflux antiporters that are mainly located in plastid-containing organisms, ranging from lower green algae to higher flowering plants. However, little genetic evidence has been provided on the functions of KEA in chloroplast development. In this study, we isolated a rice mutant, albino midrib 1 (am1), with green- and white-variegation in the first few leaves, and albino midrib phenotype in older tissues.

View Article and Find Full Text PDF