For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer).
View Article and Find Full Text PDFBiol Trace Elem Res
December 2020
Ruthenium(II)/benzonitrile complexes have demonstrated promising anticancer properties. Considering that there are no specific therapies for treating sarcoma, we decided to evaluate the cytotoxic, genotoxic, and lethal effects of cis-[RuCl(BzCN)(phen)(dppb)]PF (BzCN = benzonitrile; phen = 1,10-phenanthroline; dppb = 1,4-bis-(diphenylphosphino)butane), as well as the mechanism of cell death induction that occurs against murine sarcoma-180 tumor. Thus, MTT assay was applied to assess the ruthenium cytotoxicity, showing that the compound is a more potent inhibitor for the sarcoma-180 tumor cell viability than normal cells (lymphocytes).
View Article and Find Full Text PDFMetallomics
April 2020
Antimetastatic activity, high selectivity and cytotoxicity for human tumor cell lines make ruthenium(ii) complexes attractive for the development of new chemotherapeutic agents for cancer treatment. In this study, cytotoxic activities and the possible mechanism of cell death induced by three ruthenium complexes were evaluated, [Ru(MIm)(bipy)(dppf)]PF (1), [RuCl(Im)(bipy)(dppf)]PF (2) and [Ru(tzdt)(bipy)(dppf)]PF (3). The results showed high cytotoxicity and selectivity indexes for the human triple-negative breast tumor cell line (MDA-MB-231) with IC value and selectivity index for complex 1 (IC = 0.
View Article and Find Full Text PDFRuthenium is attracting considerable interest as the basis for new compounds to treat diseases, and studies have shown that complexes with different structures have significant antineoplastic and antimetastatic potential against several types of tumors, including tumors resistant to cisplatin drugs. We examined the cytotoxic, genotoxic, and pro-apoptotic activities of six ruthenium complexes containing amino acid with general formulation [Ru(AA)(bipy)(dppb)]PF, where AA = amino acid (alanine, glycine, leucine, lysine, methionine, or tryptophan); bipy = 2,2´-bipyridine; and dppb = [1,4-bis(diphenylphosphine)butane], against A549 (lung carcinoma) and K562 (chronic myelogenous leukemia) cancer cells. The results show that the ruthenium complexes tested were able to induce cytotoxicity in A549 and K562 cancer cells.
View Article and Find Full Text PDFIn this paper, four new ruthenium complexes, [Ru(N-S)(dppm)2]PF6 (1), [Ru(N-S)(dppe)2]PF6 (2), [Ru(N-S)2(dppp)] (3) and [Ru(N-S)2(PPh3)2] (4) [dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, PPh3 = triphenylphosphine and N-S = 2-mercaptopyrimidine anion] were synthesized and characterized using spectroscopy techniques, molar conductance, elemental analysis, electrochemical techniques and X-ray diffraction. The DNA binding studies were investigated using voltammetry and spectroscopy techniques. The results show that all complexes exhibit a weak interaction with DNA.
View Article and Find Full Text PDFPeritoneal carcinomatosis is considered as a potentially lethal clinical condition, and the therapeutic options are limited. The antitumor effectiveness of the [Ru(l-Met)(bipy)(dppb)]PF(1) and the [Ru(l-Trp)(bipy)(dppb)]PF(2) complexes were evaluated in the peritoneal carcinomatosis model, Ehrlich ascites carcinoma-bearing Swiss mice. This is the first study that evaluated the effect of Ru(II)/amino acid complexes for antitumor activity in vivo.
View Article and Find Full Text PDFChem Biol Interact
December 2017
Antimetastatic activities, low toxicity to normal cells and high selectivity for tumor cells make of the ruthenium complexes promising candidates in the search for develop new chemotherapeutic agents for the treatment of cancer. This study aimed to determine the cytotoxic, genotoxic and to elucidate the signaling pathway involved in the death cell process induced by cis-[RuCl(BzCN)(bipy)(dppb)]PF(1) and cis-[RuCl(BzCN)(bipy)(dppe)]PF(2) in Ehrlich ascites carcinoma (EAC) in vitro. Moreover, we report for the first time the anti-angiogenic potential on chick embryo chorioallantoic membrane (CAM) model.
View Article and Find Full Text PDFMol Cell Biochem
January 2018
The aim of this work was the synthesis, characterization, and cytotoxicity evaluation of three new Ru(II) complexes with a general formula [Ru(Spy)(bipy)(P-P)]PF [Spy = pyridine-6-thiolate; bipy = 2,2'-bipyridine; P-P = 1,2-bis(diphenylphosphine)ethane (1); 1,3-bis(diphenylphosphine) propane (2); and 1,1'-bis(diphenylphosphino)ferrocene] (4). Complex (3) with the 1,4-bis(diphenylphosphine)butane ligand, already known from the literature, was also synthesized, to be better studied here. The cytotoxicities of the complexes toward two kinds of cancerous cells (K562 and S-180 cells) were evaluated and compared to normal cells (L-929 and PBMC) by MTT assay.
View Article and Find Full Text PDFThe motivation to use ruthenium complexes in cancer treatment has led our research group to synthesize complexes with this metal and test them against several types of tumor cells, yielding promising results. In this paper the results of biological tests, assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were carried out on the complexes cis-[RuCl(BzCN)(bipy)(dppe)]PF6 (1), cis-[RuCl(BzCN)(bipy)(dppb)]PF6 (2), cis-[RuCl(BzCN)(bipy)(dppf)]PF6 (3) and cis-[RuCl(BzCN)(phen)(dppb)]PF6 (4) which are described [BzCN = b enzonitrile; bipy = 2,2'-bipyridine; phen = 1,10-phenanthroline; dppe = 1,2-bis(diphenylphosphino) ethane; dppb = 1,4-bis-(diphenylphosphino)butane; dppf = 1,1'-bis(diphenylphosphino)ferrocene]. The present study is focused on the cytotoxic activity of complexes (1)-(4) against four tumor cell lines and on the apoptosis and changes in the cell cycle and gene expression observed in the sarcoma 180 (S180) tumor cell line treated with complex (1).
View Article and Find Full Text PDFOver the past several decades, much attention has been focused on ruthenium complexes in antitumor therapy. Ruthenium is a transition metal that possesses several advantages for rational antitumor drug design and biological applications. In the present study, five ruthenium complexes containing amino acids were studied in vitro to determine their biological activity against sarcoma-180 tumor cells.
View Article and Find Full Text PDFSpringerplus
July 2014
Chemotherapy is a common treatment for leukemia. Ruthenium complexes have shown potential utility in chemotherapy and photodynamic therapy. The identification of new chemotherapeutics agents is critical for further progress in the treatment of leukemia.
View Article and Find Full Text PDF