Biosorption is nowadays recommended as an ecological and environmentally friendly alternative to remove metals from contaminated regions. Even in situ incubations of algae on the seabed are conducted to investigate potential future ways of reducing metal contamination. Our study investigated the negative effects on microorganisms when metal-enriched algae are released into the marine environment.
View Article and Find Full Text PDFNitrogen (N) uptake by plant roots from soil is the largest flux within the terrestrial N cycle. Despite its significance, a comprehensive analysis of plant uptake for inorganic and organic N forms across grasslands is lacking. Here we measured in situ plant uptake of 13 inorganic and organic N forms by dominant species along a 3000 km transect spanning temperate and alpine grasslands.
View Article and Find Full Text PDFIncreasing extreme climatic events threaten the functioning of terrestrial ecosystems. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils.
View Article and Find Full Text PDFUnlabelled: Archaea catalyzing the first step of nitrification in the rhizosphere possibly have an influence on plant growth and development. In this study, we found a distinct archaeal community, dominated by ammonia-oxidizing archaea (AOA), associated with the root system of pepper ( L.) and ginseng plants ( C.
View Article and Find Full Text PDFMicrobial necromass carbon (MNC) accounts for a large fraction of soil organic carbon (SOC) in terrestrial ecosystems. Yet our understanding of the fate of this large carbon pool under long-term warming is uncertain. Here, we show that 14 years of soil warming (+4°C) in a temperate forest resulted in a reduction in MNC by 11% (0-10 cm) and 33% (10-20 cm).
View Article and Find Full Text PDFClimate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars).
View Article and Find Full Text PDFForaminifera are single-celled protists which are important mediators of the marine carbon cycle. In our study, we explored the potential impact of polystyrene (PS) microplastic particles on two symbiont-bearing large benthic foraminifera species-Heterostegina depressa and Amphistegina lobifera-over a period of three weeks, employing three different approaches: investigating (1) stable isotope (SI) incorporation-via C- and N-labelled substrates-of the foraminifera to assess their metabolic activity, (2) photosynthetic efficiency of the symbiotic diatoms using imaging PAM fluorometry, and (3) microscopic enumeration of accumulation of PS microplastic particles inside the foraminiferal test. The active feeder A.
View Article and Find Full Text PDFHabitat loss and degradation are key drivers of the current biodiversity crisis. Most research focuses on the question of which traits allow species to persist in degraded habitats. We asked whether a species' trophic position or niche width influences the resilience of species in degraded habitats and to what extent habitat degradation affects trophic interactions between species.
View Article and Find Full Text PDFForaminifera are protists primarily living in benthic marine and estuarine environments. We studied uptake of inorganic carbon (C) and nitrogen (N) of the photosymbiont-bearing benthic coral reef foraminifera in the presence of heavy metals. Incubation experiments were accomplished with artificial seawater enriched with copper, iron, lead and zinc at two different concentration levels (10 and 100 fold enriched in contrast to the usual culture medium).
View Article and Find Full Text PDFOur laboratory study looked into how pesticides affect the foraminifera species Heterostegina depressa and their obligatory algal endosymbionts. We incubated the foraminifera separately with different types of pesticides at varying concentrations (1 %, 0.01 % and 0.
View Article and Find Full Text PDFUnlabelled: Phyllosphere microbial communities are increasingly experiencing intense pulse disturbance events such as drought. It is currently unknown how phyllosphere communities respond to such disturbances and if they are able to recover. We explored the stability of phyllosphere communities over time, in response to drought stress, and under recovery from drought on temperate forage grasses.
View Article and Find Full Text PDFThe next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites.
View Article and Find Full Text PDFSoil microbial necromass is an important contributor to soil organic matter (>50%) and it is largely composed of microbial residues. In soils, fragmented cell wall residues are mostly found in their polysaccharide forms of fungal chitin and bacterial peptidoglycan. Microbial necromass biomarkers, particularly amino sugars (AS) such as glucosamine (GlcN) and muramic acid (MurA) have been used to trace fungal and bacterial residues in soils, and to distinguish carbon (C) found in microbial residues from non-microbial organic C.
View Article and Find Full Text PDFWe studied metabolic activity of the symbiont-bearing large benthic foraminifer Heterostegina depressa under different light conditions. Besides the overall photosynthetic performance of the photosymbionts estimated by means of variable fluorescence, the isotope uptake (C and N) of the specimens (= holobionts) was measured. Heterostegina depressa was either incubated in darkness over a period of 15 days or exposed to an 16:8 h light:dark cycle mimicking natural light conditions.
View Article and Find Full Text PDFPhosphorus (P) is an essential and often limiting element that could play a crucial role in terrestrial ecosystem responses to climate warming. However, it has yet remained unclear how different P cycling processes are affected by warming. Here we investigate the response of soil P pools and P cycling processes in a mountain forest after 14 years of soil warming (+4 °C).
View Article and Find Full Text PDFIncreasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth ( O incorporation into DNA) and respiration after C, N and P amendments.
View Article and Find Full Text PDFTire wear particle (TWP)-derived compounds may be of high concern to consumers when released in the root zone of edible plants. We exposed lettuce plants to the TWP-derived compounds diphenylguanidine (DPG), hexamethoxymethylmelamine (HMMM), benzothiazole (BTZ), -phenyl-N'-(1,3-dimethylbutyl)--phenylenediamine (6PPD), and its quinone transformation product (6PPD-q) at concentrations of 1 mg L in hydroponic solutions over 14 days to analyze if they are taken up and metabolized by the plants. Assuming that TWP may be a long-term source of TWP-derived compounds to plants, we further investigated the effect of leaching from TWP on the concentration of leachate compounds in lettuce leaves by adding constantly leaching TWP to the hydroponic solutions.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2023
Foraminifera are unicellular, marine organisms that occur worldwide. A very common species in the German Wadden Sea is Elphidium williamsoni. Some foraminifera (such as elphidia) are able to use kleptoplastidy, which allows them to incorporate chloroplasts from their algal food source into their own cell body.
View Article and Find Full Text PDFThe Bromeliaceae family has been used as a model to study adaptive radiation due to its terrestrial, epilithic, and epiphytic habits with wide morpho-physiological variation. Functional groups described by Pittendrigh in 1948 have been an integral part of ecophysiological studies. In the current study, we revisited the functional groups of epiphytic bromeliads using a 204 species trait database sampled throughout the Americas.
View Article and Find Full Text PDFReactive nitrogen (N) species, such as ammonium (NH), nitrate (NO) and gaseous nitrous oxide (NO), are released into the environment during the degradation of municipal solid waste (MSW), causing persistent environmental problems. Landfill remediation measures, such as in-situ aeration, may accelerate the degradation of organic compounds and reduce the discharge of ammonium via leachate. Nonetheless, the actual amount of N in the waste material remains relatively constant and a coherent explanation for the decline in leachate ammonium concentrations is still lacking.
View Article and Find Full Text PDFFine root litter represents an important carbon input to soils, but the effect of global warming on fine root turnover (FRT) is hardly explored in forest ecosystems. Understanding tree fine roots' response to warming is crucial for predicting soil carbon dynamics and the functioning of forests as a sink for atmospheric carbon dioxide (CO). We studied fine root production (FRP) with ingrowth cores and used radiocarbon signatures of first-order, second- to third-order, and bulk fine roots to estimate fine root turnover times after 8 and 14 years of soil warming (+4 °C) in a temperate forest.
View Article and Find Full Text PDFRationale: Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (N ) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ N in NO and NH and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking.
Methods: Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ N in NO and NH .