Publications by authors named "Wanda Haeck"

The Hippo pathway and its downstream effectors, the YAP and TAZ transcriptional coactivators, are deregulated in multiple different types of human cancer and are required for cancer cell phenotypes in vitro and in vivo, while largely dispensable for tissue homeostasis in adult mice. YAP/TAZ and their main partner transcription factors, the TEAD1-4 factors, are therefore promising anticancer targets. Because of frequent YAP/TAZ hyperactivation caused by mutations in the Hippo pathway components NF2 and LATS2, mesothelioma is one of the prime cancer types predicted to be responsive to YAP/TAZ-TEAD inhibitor treatment.

View Article and Find Full Text PDF

RNA-binding protein aggregation is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). To gain better insight into the molecular interactions underlying this process, we investigated FUS, which is mutated and aggregated in both ALS and FTLD. We generated a Drosophila model of FUS toxicity and identified a previously unrecognized synergistic effect between the N-terminal prion-like domain and the C-terminal arginine-rich domain to mediate toxicity.

View Article and Find Full Text PDF

Peripheral nerve axons require a well-organized axonal microtubule network for efficient transport to ensure the constant crosstalk between soma and synapse. Mutations in more than 80 different genes cause Charcot-Marie-Tooth disease, which is the most common inherited disorder affecting peripheral nerves. This genetic heterogeneity has hampered the development of therapeutics for Charcot-Marie-Tooth disease.

View Article and Find Full Text PDF

As cancer is becoming more and more a chronic disease, a large proportion of patients is confronted with devastating side effects of certain anti-cancer drugs. The most common neurological complications are painful peripheral neuropathies. Chemotherapeutics that interfere with microtubules, including plant-derived vinca-alkaloids such as vincristine, can cause these chemotherapy-induced peripheral neuropathies (CIPN).

View Article and Find Full Text PDF

The synthesis of novel isoform-selective HDAC inhibitors is considered to be an important, emerging field in medicinal chemistry. In this paper, the preparation and assessment of thirteen selective HDAC6 inhibitors is disclosed, elaborating on a previously developed thiaheterocyclic Tubathian series. All compounds were evaluated in vitro for their ability to inhibit HDAC6, and a selection of five potent compounds was further screened toward all HDAC isoforms (HDAC1-11).

View Article and Find Full Text PDF

Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties.

View Article and Find Full Text PDF

A small library of 3-[(4-hydroxycarbamoylphenyl)aminomethyl]benzothiophenes was prepared and assessed as a novel class of HDAC6 inhibitors, leading to the identification of three representatives as potent and selective HDAC6 inhibitors. Further tests with regard to inflammatory responses indicated that HDAC6 inhibition can be uncoupled from transcriptional inhibition at the level of activated NF-κB, AP-1, and GR.

View Article and Find Full Text PDF

Oligodendrocytes are well known targets for immune-mediated and infectious diseases, and have been suggested to play a role in neurodegeneration. Here, we report the involvement of oligodendrocytes and their progenitor cells in the ventral grey matter of the spinal cord in amyotrophic lateral sclerosis, a neurodegenerative disease of motor neurons. Degenerative changes in oligodendrocytes were abundantly present in human patients with amyotrophic lateral sclerosis and in an amyotrophic lateral sclerosis mouse model.

View Article and Find Full Text PDF