Publications by authors named "Wancheng Pang"

Article Synopsis
  • Sulfate-reducing bacteria (SRB) can help clean up mine pollution but need more research on how they stabilize heavy metals in low oxygen environments.
  • The study created a new bacterial consortium, HQ23, using SRB and local microbes, confirming the presence of important species through advanced genetic techniques.
  • Results showed HQ23 thrives in low oxygen and varying pH levels, effectively reducing harmful metals in contaminated soils, while also enhancing nitrogen-fixing activity, suggesting it could be valuable for future environmental clean-ups.
View Article and Find Full Text PDF

To remediate the Cr(VI)-organic co-contaminants in a non-ferrous mining area, a gallic acid (GA) accelerated lead-zinc smelting slag (LZSS, a mine-sourced waste) mediated peroxodisulfate (PDS) Fenton-like system was constructed for degradation of two typical flotation reagents (benzotriazole and N-hydroxyphthalimide). LZSS acting as an in-situ Fe source in the Fenton-like process, could continuously release Fe species, while GA as a chelate with reducing properties was able to accelerate the rate-limiting step of Fe(III)/Fe(II) cycle to enhance the production of reactive oxygen species (ROS). In the LZSS/PDS/GA system, produced SO, OH and Fe(IV) jointly contributed to the contaminant removal through radical/nonradical pathways.

View Article and Find Full Text PDF

The sulfate-reducing efficiency of sulfate-reducing bacteria (SRB) is strongly influenced by the presence of oxygen, but little is known about the oxygen tolerance mechanism of SRB and the effect of oxygen on the metalliferous immobilization by SRB. The performance evaluation, identification of bioprecipitates, and microbial and metabolic process analyses were used here to investigate the As immobilization mechanisms and survival strategies of the SRB1 consortium under different oxygen-containing environments. Results indicated that the sulfate reduction efficiency was significantly decreased under aerobic (47.

View Article and Find Full Text PDF

Many non-ferrous metal mining and smelting activities have caused severe metal(loid) contamination in the local soil environment. The metabolic activity of soil microorganisms in four areas affected by different metallurgical activities (production vs. waste disposal) was characterized using a contamination gradient from the contaminated site to the surrounding soils.

View Article and Find Full Text PDF

The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe/Fe conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe/Fe transformation, respectively.

View Article and Find Full Text PDF

There are few studies on concurrent bacterial and fungal community assembly processes that govern the metal(loid)s biogeochemical cycles at smelters. Here, a systematic investigation combined geochemical characterization, co-occurrence patterns, and assembly mechanisms of bacterial and fungal communities inhabiting soils around an abandoned arsenic smelter. Acidobacteriota, Actinobacteriota, Chloroflexi, and Pseudomonadota were dominant in bacterial communities, whereas Ascomycota and Basidiomycota dominated fungal communities.

View Article and Find Full Text PDF

The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings.

View Article and Find Full Text PDF

UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/HO processes.

View Article and Find Full Text PDF

Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.

View Article and Find Full Text PDF

In this study compound-specific isotope analysis (CSIA) has been used to explore the degradation mechanism of nano titanium dioxide (TiO) catalyzes photodegradation of diethyl phthalate (DEP). TiO is a popular photosensitizer with potential in waste water treatment and application in advanced oxidation processes. The degradation process of DEP can be described with a first-order kinetics in the applied concentration ranges.

View Article and Find Full Text PDF

Here we combined microcalorimetry, enzyme activity measurements, and characterization of metal form in order to evaluate the effect of metal(loid)s on the activity of microbial community inhabiting tailings area with high toxic metal(loid)s concentration. Chromium (Cr), nickel (Ni), copper (Cu) and manganese (Mn) were the main pollutants. The exchangeable fractions (bioavailability) of Cu, Ni and Mn were higher in the tailings sample (Site Z), indicating a higher environmental risk.

View Article and Find Full Text PDF

Microbes are important component in terrestrial ecosystem, which are believed to play vital roles in biogeochemical cycles of metalloids in mining and smelting surroundings. Many studies on microbial diversity and structures have been investigated around mining and smelting sites, whereas the ecological processes and co-occurrence patterns that influence the biogeographic distributions of microbial communities is yet poorly understood. Herein, microbial biogeography, assembly mechanism and co-occurrence pattern around mining and smelting zone were systematically unraveled using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Non-ferrous metal(loid)s in region with karst characteristic are highly diffusible, especially by runoff or atmospheric deposition. However, microbiota in response to the diffusing metal(loid)s is still to be understood. In this study, we focused on microbiota across metal(loid)s diffusion pathways around a non-ferrous smelting assembly.

View Article and Find Full Text PDF

Mining and smelting activities have introduced severe potentially toxic metals (PTMs) contamination into surrounding soil settings. Influences of PTMs on microbial diversity have been widely studied. However, variations of microbial communities, network structures and community functions in different levels of PTMs contaminated soils adjacent to mining and smelting aera are still poorly investigated.

View Article and Find Full Text PDF

Butyl Xanthate (BX) is a typical flotation reagent used to extract non-ferrous nickel ores, discharged into the surrounding environment of mining areas in large quantities. However, few studies have focused on the toxicity of combined pollution of BX and nickel (Ni) on aquatic plants, especially phytoplankton, the main producer of aquatic ecosystems. The toxicity and potential mechanism of single and combined pollution of BX and Ni at different concentrations (0-20 mg L) on typical freshwater algae (Chlorella pyrenoidosa) were studied.

View Article and Find Full Text PDF

Currently, sustainable utilization, including recycling and valorization, is becoming increasingly popular in waste management. Black soldier fly larvae (BSFL) can convert the carbon (C) and nitrogen (N) from organic waste into biomass and improve properties of the substrate to reduce greenhouse gas and NH emissions. In this study, the recycling of C and N and the emissions of greenhouse gas and NH during BSFL bio-treatment of mixtures of pig manure and corncob were investigated under different C/N ratios.

View Article and Find Full Text PDF

Currently, sustainable utilisation, including recycling and valorisation, is becoming increasingly relevant in environmental management. The wastes bioconversion by the black soldier fly larva (BSFL) has two potential advantages: the larvae can convert the carbon and nitrogen in the biomass waste, and improve the properties of the substrate to reduce the loss of gaseous carbon and nitrogen. In the present study, the conversion rate of carbon, nitrogen and the emissions of greenhouse gases and NH during BSFL bio-treatment of food waste were investigated under different pH conditions.

View Article and Find Full Text PDF

The effects of different moisture contents on greenhouse gas (GHG) emissions from pig manure (PM) digested by black soldier fly larvae (BSFL) as well as the accompanying changes of nitrogen and carbon contents in gaseous emissions and residues were studied. A mixture of PM and corncob at the ratio of 2.2:1 was prepared with a moisture content of 45%.

View Article and Find Full Text PDF