Publications by authors named "Wancai Wang"

Forest soil microbes play a crucial role in regulating atmospheric-soil carbon fluxes. Environmental heterogeneity across forest types and regions may lead to differences in soil CO and CH emissions. However, the microbial mechanisms underlying these emission variations are currently unclear.

View Article and Find Full Text PDF

The field practices, including irrigation and fertilization, strongly affect greenhouse gas emissions and soil nutrient cycling from agriculture. Understanding the underlying mechanism of greenhouse gas emissions, soil nutrient cycling, and their impact factors (fungal diversity, network characteristics, soil pH, salt, and moisture) is essential for efficiently managing global greenhouse gas mitigation and agricultural production. By considering abundant and rare taxa, we determine the identities and relative importance of ecological processes that modulate the fungal communities and identify whether they are crucial contributors to soil nutrient cycling and greenhouse gas emissions.

View Article and Find Full Text PDF

Ecological stoichiometry plays important roles in understanding the nutrient constraints on tree growth and development, as well in maintaining ecosystem services in forests, yet the characteristics of carbon:nitrogen:phosphorous (C:N:P) stoichiometry in forests under karst environment have not been sufficiently evaluated. In this study, concentration, distribution, stocks of Nitrogen (N) and Phosphorous (P), and ecological stoichiometry were studied in three common forest types: Masson pine natural forests (MPNF), Masson pine plantation forests (MPPF), and Slash pine plantation forests (SPPF) in a karst region of southwestern China. Results showed that N concentrations were higher in overstory than in understory and litter in the studied forests.

View Article and Find Full Text PDF

Agroforest systems have been widely recognized as an integrated approach to sustainable land use for addressing the climate change problem because of their greater potential to sequester atmospheric CO with multiple economic and ecological benefits. However, the nature and extent of the effects of an age-sequence of agroforestry systems on carbon (C) storage remain largely unknown. To reveal the influence of different aged poplar-crop systems on C stocks, we investigated the variation in biomass and C storage under four aged poplar-crop agroforest systems (3-, 9-, 13-, and 17-year-old) in the Henan province of China.

View Article and Find Full Text PDF

Nitrogen (N) is often recognized as the primary limiting nutrient element for the growth and production of forests worldwide. Litterfall represents a significant pathway for returning nutrients from aboveground parts of trees to the soils and plays an essential role in N availability in different forest ecosystems. This study explores the N transformation processes under litterfall manipulation treatments in a Masson pine pure forest (MPPF), and Masson pine and Camphor tree mixed forest (MCMF) stands in subtropical southern China.

View Article and Find Full Text PDF