Compared with chiral β-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β-amino phosphorus derivatives from -β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee).
View Article and Find Full Text PDFInspired by the wavefront masking of the scattering medium, we proposed a multiplexed coded aperture holographic encryption method. The incoherent multiplexed phase mask encryption experiments involved in the method are realized for what we believe to be the first time. From the holograms, we extracted three images using the frequency-selective phase iterative coding algorithm we purposely put forward.
View Article and Find Full Text PDFVinylaziridines are important building blocks in organic chemistry, especially in the synthesis of nitrogen-containing heterocycles. The direct and efficient transfer of an appropriate nitrogen source to readily accessible conjugated dienes is a notable methodology. The Pd-catalyzed oxidative 1,2-difunctionalization of conjugated dienes through a π-allyl-palladium species should be an ideal method for the selective synthesis of vinylaziridines.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
The asymmetric hydrogenation of benzophenones, catalyzed by low-activity earth-abundant metal copper, has hitherto remained a challenge due to the substrates equipped with two indistinguishably similar aryl groups. In this study, we demonstrated that the prochiral carbon of the ortho-bromine substrate exhibits the highest electrophilicity and high reactivity among the ortho-halogen substituted benzophenones, as determined by the Fukui function (f) analysis and hydrogenation reaction. Considering that the enantiodirecting functional bromine group can be easily derivatized and removed in the products, we successfully achieved a green copper-catalyzed asymmetric hydrogenation of ortho-bromine substituted benzophenones.
View Article and Find Full Text PDFA highly efficient Ru-catalyzed asymmetric hydrogenation of α,β-unsaturated γ-lactams has been developed by using a -symmetric ruthenocenyl phosphine-oxazoline as the chiral ligand. This method achieves the enantioselective synthesis of chiral β-substituted γ-lactams in high yields and with excellent enantioselectivities (up to 99% yield with 99% ee). Mechanistic studies based on detailed control experiments and computational investigation revealed that the cationic Ru-complex acts as the active catalytic species; the protonation process of the oxa-π-allyl-Ru complex, which is formed by the migratory insertion of the C=C double bond to the Ru-H bond (the stereocontrolling step) followed by an isomerization process, is the rate-determining step, and the existence of PPh is crucial for the highly efficient catalytic behavior.
View Article and Find Full Text PDFThe precise control of and configurations of the carbon-carbon double bond in alkene synthesis has long been a fundamental challenge in synthetic chemistry, even more pronounced when simultaneously striving to achieve enantioselectivity [(,), (,), (,), (,)]. Moreover, enantiopure non-natural α-amino acids are highly sought after in organic and medicinal chemistry. In this study, we report a ligand-controlled stereodivergent synthesis of non-natural α-quaternary amino acids bearing trisubstituted alkene moieties in high yields with excellent enantioselectivity and / selectivities.
View Article and Find Full Text PDFThere are only a few examples being reported for the simultaneous control of central chirality and axial chirality because it is more challenging. Herein, we report an iridium-catalyzed asymmetric hydroarylation of unactivated alkenes with heterobiaryls to simultaneously construct axial and central chirality. The reaction showed a broad substrate scope and delivered the products with satisfactory results.
View Article and Find Full Text PDFThe Wacker and Wacker-type reactions are some of the most fundamental and powerful transformations in organic chemistry for their ability to efficiently produce valuable chemicals. Remarkable progress has been achieved in asymmetric oxy/aza-Wacker-type reactions; however, asymmetric Wacker-type dicarbofunctionalization remains underdeveloped, especially for the concurrent construction of two stereocenters. Herein, we report a Pd/Cu-cocatalyzed enantio- and diastereodivergent Wacker-type dicarbofunctionalization of alkene-tethered aryl triflates with imino esters.
View Article and Find Full Text PDFThe transition-metal catalyzed asymmetric hydrogenation of unfunctionalized alkenes is challenging. Herein, we report an efficient iridium-catalyzed asymmetric hydrogenation of unfunctionalized cycloalkenes, delivering chiral 2-aryl tetralins in excellent yields and with moderate to excellent enantioselectivities. The reaction can be performed on a gram-scale with a low catalyst loading (S/C = 1000), and the reduced product was obtained without erosion of the enantioselectivity.
View Article and Find Full Text PDFTransition metal-catalyzed asymmetric hydrogenation is one of the most efficient methods for the preparation of chiral α-substituted propionic acids. However, research on this method, employing cleaner earth-abundant metal catalysts, is still insufficient in both academic and industrial contexts. Herein, we report an efficient nickel-catalyzed asymmetric hydrogenation of α-substituted acrylic acids affording the corresponding chiral α-substituted propionic acids with up to 99.
View Article and Find Full Text PDFThe construction of chiral motifs containing nonadjacent stereocenters in an enantio- and diastereoselective manner has long been a challenging task in synthetic chemistry, especially with respect to their stereodivergent synthesis. Herein, we describe a protocol that enables the enantio- and diastereoselective construction of 1,5/1,7-nonadjacent tetrasubstituted stereocenters through a Pd/Cu-cocatalyzed Heck cascade reaction. Notably, a C=C bond relay strategy involving the shift of the π-allyl palladium intermediate was successfully applied in the asymmetric construction of 1,7-nonadjacent stereocenters.
View Article and Find Full Text PDFIn recent years, a great deal of work has been devoted to the development of thermoresponsive polymers that can be made into new types of smart materials. In this paper, a branched polymer, HTPB--(PNIPAM/PEG), with polyolefin chain segments as the backbone and having polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) as side chains was synthesized by ATRP and click reactions using N-HTPB-Br as the macroinitiator. This initiator was designed and synthesized using hydroxyl-terminated polybutadiene (HTPB) as the substrate.
View Article and Find Full Text PDFAn efficient RuPHOX-Ru catalyzed asymmetric cascade hydrogenation of 3-substituted chromones has been achieved under mild reaction conditions, affording the corresponding chiral 3-substituted chromanols in high yields with excellent enantio- and diastereoselectivities (up to 99 % yield, >99 % ee and >20 : 1 dr). Control reactions and deuterium labelling experiments revealed that a dynamic kinetic resolution process occurs during the subsequent hydrogenation of the C=O double bond, which is responsible for the high performance of the asymmetric cascade hydrogenation. The resulting products allow for several transformations and it was shown that the protocol provides a practical and alternative strategy for the synthesis of chiral 3-substituted chromanols and their derivatives.
View Article and Find Full Text PDFAsymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
View Article and Find Full Text PDFMuch attention has been focused on the catalytic asymmetric creation of single chiral centers or two adjacent stereocenters. However, the asymmetric construction of two nonadjacent stereocenters is of significant importance but is challenging because of the lack of remote chiral induction models. Herein, based on a C═C bond relay strategy, we report a synergistic Pd/Cu-catalyzed 1,5-double chiral induction model.
View Article and Find Full Text PDFSurvivin is a novel attractive target for cancer therapy; however, it is considered undruggable because it lacks enzymatic activities. Herein, we describe our efforts toward the discovery of a novel series of 4,11-dioxo-4,11-dihydro-1-anthra[2,3-]imidazol-3-ium derivatives as survivin inhibitors by targeting ILF3/NF110. Intensive structural modifications led us to identify a lead compound , which remarkably inhibited nonsmall cell lung cancer cells A549 with an IC value of 9 nM and solid tumor cell proliferation with more than 700-fold selectivity against human normal cells.
View Article and Find Full Text PDFAn efficient cobalt-catalyzed asymmetric reductive amination of ketones with hydrazides has been realized, directly producing valuable chiral hydrazines in high yields and enantioselectivities (up to 98% enantiomeric excess).
View Article and Find Full Text PDFBased on an amino-group-assisted coordination strategy and a proton-shuttle-activated outer-sphere mode, the cobalt-catalyzed asymmetric hydrogenation of α-primary amino ketones has been developed, resulting in the efficient synthesis of chiral vicinal amino alcohols bearing functionalized aryl rings in high yields and enantioselectivities (up to 99% enantiomeric excess (ee)) within 0.5 h.
View Article and Find Full Text PDFThe 1,3-rearrangement of allylic derivatives has rarely been reported, except for allylic alcohols. Herein, we describe an iridium-catalyzed 1,3-rearrangement of readily available allylic ethers to access the difficultly prepared allylic ethers with a large steric hindrance. The developed method shows a broad substrate scope and could be used in the late-stage modification of several natural products.
View Article and Find Full Text PDFFluorinated amino acids and related peptides/proteins have been found widespread applications in pharmaceutical and agricultural compounds. However, strategies for introducing a C-F bond into amino acids in an enantioselective manner are still limited and no such asymmetric catalysis strategy has been reported. Herein, we have successfully developed a Pd/Cu/Li ternary system for stereodivergent synthesis of chiral fluorinated amino acids.
View Article and Find Full Text PDFIn this paper, the effects of HTPBs with different main-chain microstructures on their triblock copolymers and polyurethane properties were investigated. Three polyether-modified HTPB triblock copolymers were successfully synthesized via a cationic ring-opening copolymerization reaction using three HTPBs with different microstructures prepared via three different polymerization methods as the macromolecular chain transfer agents and tetrahydrofuran (THF) and propylene oxide (PO) as the copolymerization monomers. Finally, the corresponding polyurethane elastomers were prepared using the three triblock copolymers as soft segments and toluene diisocyanate (TDI) as hard segments.
View Article and Find Full Text PDFNovel axially chiral biphenyl diphosphine ligands E-BridgePhos, bearing an ether chain bridge at the 5,5'-position of the biphenyl backbone, have been developed and successfully applied in the Rh-catalyzed enantioselective desymmetric hydrogenation of α-acetamido-1,3-indanediones, providing chiral α-acetamido-β-hydroxybenzocyclic pentones in high yields (up to 97%) and with excellent enantioselectivities (up to 99% ee). The reaction could be carried out on a gram scale, and the corresponding products were used as vital intermediates for the synthesis of analogues of chiral spirobenzylisoquinoline alkaloids. Both the crystal structure analysis and the DFT calculations revealed that the large dihedral angle of the E-BridgePhos-Rh complexes is highly related to the excellent enantioselectivities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized.
View Article and Find Full Text PDFNickel-catalyzed hydroamination and hydroalkoxylation of enelactams with unactivated amines and alcohols are reported. This method showed good functional group tolerance and delivered the corresponding hydrofunctionalized products in good to excellent yields (≤98%). Furthermore, an intramolecular hydroalkoxylation of an enelactam was also realized, giving a cyclization product in a good yield.
View Article and Find Full Text PDF