Background And Objectives: All US Food and Drug Administration-approved medications for Tourette syndrome are antipsychotics, and their use is limited by the risk of weight gain, metabolic changes, and drug-induced movement disorders. Several small trials suggest that ecopipam, a first-in-class, selective dopamine 1 receptor antagonist, reduces tics with a low risk for these adverse events. This trial sought to further evaluate the efficacy, safety, and tolerability of ecopipam in children and adolescents with moderate to severe Tourette syndrome.
View Article and Find Full Text PDFNP260 was designed as a first-in-class selective antagonist of α4-subtype GABAA receptors that had promising efficacy in animal models of pain, epilepsy, psychosis, and anxiety. However, development of NP260 was complicated following a 28-day safety study in dogs in which pronounced elevations of serum aminotransferase levels were observed, although there was no accompanying histopathological indication of hepatocellular injury. To further investigate the liver effects of NP260, we assayed stored serum samples from the 28-day dog study for liver specific miRNA (miR-122) as well as enzymatic biomarkers glutamate dehydrogenase and sorbitol dehydrogenase, which indicate liver necrosis.
View Article and Find Full Text PDFObjectives: Two toxicologic studies of vigabatrin were conducted with immature Sprague Dawley rats to characterize intramyelinic edema (IME) formation and assess potential impact on behavioral measures. Study 1 was a dosage-ranging characterization of overall toxicity of vigabatrin in young, developing rats. Study 2 evaluated vacuolar brain lesions found in Study 1.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2011
Heme oxygenase-1 (HO-1) induction by hemin or Panhematin protects against experimental pancreatitis. As a preclinical first step toward determining whether HO-1 upregulation is a viable target in acute pancreatitis (AP) patients, we tested the hypothesis that HO-1 expression in peripheral blood mononuclear cell (PBMC) subsets of hospitalized patients with mild AP is upregulated then normalizes upon recovery and that cells from AP patients have the potential to upregulate their HO-1 ex vivo if exposed to Panhematin. PBMCs were isolated on days 1 and 3 of hospitalization from the blood of 18 AP patients, and PMBC HO-1 levels were compared with PMBCs of 15 hospitalized controls (HC) and 7 volunteer healthy controls (VC).
View Article and Find Full Text PDFPurpose: Rapid cleavage in vivo and inefficient cellular uptake limit the clinical utility of antisense oligonucleotides (AON). Liposomal formulation may promote better intratumoral AON delivery and inhibit degradation in vivo. We conducted the first clinical evaluation of this concept using a liposomal AON complementary to the c-raf-1 proto-oncogene (LErafAON).
View Article and Find Full Text PDFFormation of domains by the membrane binding motifs of caveolin and src were studied in large unilamellar vesicles using fluorescence digital imaging microscopy. Caveolin, a major structural protein of caveolae, contains a scaffolding region (residues 82-101) that contributes to the binding of the protein to the plasma membrane. A caveolin peptide (82-101) corresponding to this scaffolding region induced the formation of membrane domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate.
View Article and Find Full Text PDFDirect fluorescence digital imaging microscopy observations demonstrate that a basic peptide corresponding to the effector region of the myristoylated alanine-rich C kinase substrate (MARCKS) self-assembles into membrane domains enriched in the acidic phospholipids phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). We show here that pentalysine, which corresponds to the first five residues of the MARCKS effector region peptide and binds to membranes through electrostatic interactions, also forms domains enriched in PS and PIP2. We present a simple model of domain formation that represents the decrease in the free energy of the system as the sum of two contributions: the free energy of mixing of neutral and acidic lipids and the electrostatic free energy.
View Article and Find Full Text PDFThe myristoylated alanine-rich protein kinase C substrate (MARCKS) is a major protein kinase C (PKC) substrate in many different cell types. MARCKS is bound to the plasma membrane, and several recent studies suggest that this binding requires both hydrophobic insertion of its myristate chain into the bilayer and electrostatic interaction of its cluster of basic residues with acidic lipids. Phosphorylation of MARCKS by PKC introduces negative charges into the basic cluster, reducing its electrostatic interaction with acidic lipids and producing translocation of MARCKS from membrane to cytoplasm.
View Article and Find Full Text PDF