Publications by authors named "WanNian Yan"

Quantum dots, also known as semiconductor nanocrystals, are novel fluorescent labels for biological imaging and sensing. However, quantum dot-antibody conjugates with small dimensions (~10 nm), prepared through laborious purification procedures, exhibit limited sensitivity in detecting certain trace disease markers using lateral flow immunoassay strips. Herein, we present a method for the preparation of quantum dot nanobeads (QDNB) using a one-step emulsion evaporation method.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed a Chinese family with AKE symptoms using genome-wide linkage analysis and whole-exome sequencing, leading to the identification of a mutation in the CCDC91 gene which affects elastin transport.
  • * Functional tests showed that a lack of CCDC91 leads to abnormal accumulation of proteins in skin cells, providing new insights into how this gene contributes to the disease's progression and advancing the understanding of AKE mechanisms.
View Article and Find Full Text PDF

Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples.

View Article and Find Full Text PDF

Backgrounds: Psoriasis and atopic dermatitis are two common chronic inflammatory skin diseases that enormously deteriorate the psycho-physical and socio-economic condition of the patients. Although differential immune responses have been found to operate in the pathomechanisms of atopic dermatitis and psoriasis, the epidermal keratinocytes are the major targets in both diseases, and sometimes, they show similar clinical presentations. The skin barrier, itching, and inflammation are current and future treatment targets for both of them, but the relevant shared mechanisms of the two diseases are far from understood.

View Article and Find Full Text PDF

Objective: In most cases, dermatofibrosarcoma protuberans (DFSP) is characterized by the chromosomal translocation t (17; 22) (q22; q13) that leads to a fusion of collagen type 1 alpha 1 (COL1A1) and platelet-derived growth factor beta chain (PDGFB). Recently, next-generation sequencing (NGS) has been reported to detect fusion transcripts in some malignancies. Therefore, the present study aimed to evaluate the utility of the targeted NGS in detecting the COL1A1-PDGFB fusion in patients with DFSP.

View Article and Find Full Text PDF

Background: Highly efficient capture and detection of circulating tumor cells (CTCs) remain elusive mainly because of their extremely low concentration in patients' peripheral blood.

Methods: We present an approach for the simultaneous capturing, isolation, and detection of CTCs using an immuno-fluorescent magnetic nanobead system (iFMNS) coated with a monoclonal anti-EpCAM antibody.

Results: The developed antibody nanobead system allows magnetic isolation and fluorescent-based quantification of CTCs.

View Article and Find Full Text PDF

The incidence of fungal infections has increased continuously in recent years. Caspofungin (CAS) is one of the first-line drugs for the treatment of systemic fungal infection. However, the emerging CAS-resistant clinical isolates and high economic cost for CAS administration hamper the wide application of this drug.

View Article and Find Full Text PDF

A highly sensitive quantum dot (QD)-based western blot assay with extended dynamic range was developed. Bimodal size distribution QD (BQ) immunoprobes composed of small size single QD (7.3 nm) and big size QD nanobead (QB) (82.

View Article and Find Full Text PDF