Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery.
View Article and Find Full Text PDFResearch in translational medicine often requires high-resolution characterization techniques to visualize or quantify the fluorescent probes. For example, drug delivery systems contain fluorescent molecules enabling in vitro and in vivo tracing to determine biodistribution or plasma disappearance. Albeit fluorescence imaging systems with sufficient resolution exist, the sample preparation is typically too complex to image a whole organism of the size of a mouse.
View Article and Find Full Text PDFAlthough multispectral optoacoustic tomography (MSOT) significantly evolved over the last several years, there is a lack of quantitative methods for analysing this type of image data. Current analytical methods characterise the MSOT signal in manually defined regions of interest outlining selected tissue areas. These methods demand expert knowledge of the sample anatomy, are time consuming, highly subjective and prone to user bias.
View Article and Find Full Text PDFJaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection.
View Article and Find Full Text PDFDye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules ( ≈ 20 kg mol), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units.
View Article and Find Full Text PDFSuccessful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells.
View Article and Find Full Text PDFDespite the rigidity of double-stranded DNA (dsDNA), its packaging is used to construct nonviral gene carriers due to its availability and the importance of its double-helix to elicit transcription. However, there is an increasing demand for more compact-sized carriers to facilitate tissue penetration, which may be easily fulfilled by using the more flexible single-stranded DNA (ssDNA) as an alternative template. Inspired by the adeno-associated virus (AAV) as a prime example of a transcriptionally active ssDNA system, we considered a methodology that can capture unpaired ssDNA within the polyplex micelle system (PM), an assembly of DNA and poly(ethylene glycol)--poly(l-lysine) (PEG-PLys).
View Article and Find Full Text PDF