PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.
View Article and Find Full Text PDFBackground: Selpercatinib is approved for the treatment of -fusion-positive non-small-cell lung cancer (NSCLC).
Objective: We present a final update on LIBRETTO-321 to enhance the understanding of long-term efficacy and safety in Chinese patients.
Design: This open-label, multicenter, phase II study included patients with advanced -altered solid tumors.
Metal-organic frameworks (MOFs) are a class of porous materials that are of topical interest for their utility in water-related applications. Nevertheless, molecular-level insight into water-MOF interactions and MOF hydrolytic reactivity remains understudied. Herein, we report two hydrolytic pathways leading to either structural stability or framework decomposition of a MOF (ZnMOF-1).
View Article and Find Full Text PDFIn recent years, biopolymer-based food packaging films have emerged as promising alternatives to petroleum-based plastic food packaging films. Various additives have been explored to enhance their properties, and one such group of additives is natural plant aldehydes. These aldehydes are commonly employed to improve the antibacterial and antioxidant properties of biopolymer-based food packaging films.
View Article and Find Full Text PDFIn this work, sodium alginate (SA) composite films containing propolis extract (PRO) and graphene oxide (GO) were developed. Subsequently, the effects of PRO and GO on different properties of SA composite films were studied, and the films were characterized by scanning electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The PRO release properties and fruit preservation performance of the developed composite films were also investigated.
View Article and Find Full Text PDFHuman plasma proteomic and glycoproteomic analyses have emerged as an alternate avenue to identify disease biomarkers and therapeutic approaches. However, the vast number of high-abundance proteins in plasma can cause mass spectrometry (MS) suppression, which makes it challenging to detect low-abundance proteins (LAP). Currently, immunoaffinity-based depletion methods and strategies involving nanomaterial protein coronas have been developed to remove high-abundance proteins (HAP) and enhance the depth of plasma protein identification.
View Article and Find Full Text PDFObjective: To identify proliferative hepatocellular carcinoma (HCC) preoperatively using quantitative measurements combined with the updated standard 2021 LI-RADS universal lexicon-based qualitative features on multiphase dynamic CT (MDCT).
Methods: We retrospectively analyzed 273 patients (102 proliferative HCCs) who underwent preoperative MDCT with surgically confirmed HCC in two medical centers. Imaging features were evaluated according to the updated 2021 LI-RADS universal lexicon, and quantitative measurements were analyzed.
Tissue Eng Part C Methods
December 2024
Owing to the high occurrence of tissue detachment during the sample preparation process, the application of multiplex immunohistochemistry (mIHC) technology is limited in the field of fragile tissue samples, such as tendons, ligaments, and bones. To optimize a method for preparing sections for mIHC on fragile tissue samples, taking the human anterior cruciate ligament as an example, paraffin-embedded continuous sections with a thickness of 4 μm were divided into two groups: baking groups underwent routine section processing, and after being mounted on glass slides, they were baked at 65°C for 4 h, 8 h, or 24 h; ultraviolet (UV) photosensitive cross-linking groups used adhesive-coated slides for mounting and were directly subjected to UV light-induced cross-linking, with the cross-linking time set at 0 s, 20 s, 40 s, 1 min, 2 min, 3 min, 4 min, and 5 min, respectively. After deparaffinization and rehydration, we simulated the microwave step, which was most likely to cause tissue detachment during the mIHC experimental procedure, and then, the sections were stained with eosin.
View Article and Find Full Text PDFIntroduction: The role of endocytosis in drug-resistance and pathogenicity remains poorly understood, despite its importance as a fundamental component of intracellular trafficking.
Objective: In order to understand the role of endocytosis in cell wall integrity, drug resistance, and virulence.
Methods: Detection of intracellular endocytosis by FM4-64 staining; Scanning electron microscopy is used to detect cell wall components; Spot assay for detecting drug sensitivity; Co-ip is used to detect protein interactions.
Background: Post-stroke stress can trigger instant survival but its influence on long-term ischemic stroke outcomes remains controversial. Thus, we sought to explore the associations of acute post-stroke stress evidenced by endocrine and metabolic changes, with long-term ischemic stroke outcomes.
Methods: Admissions for acute ischemic stroke within seven days of onset were prospectively recruited to determine acute endocrine and metabolic variations measured by thyroid parameters and the stress hyperglycemia ratio (SHR).
This study aimed to investigate the behavior of smart bilayer films under various temperature and relative humidity (RH). Smart bilayer films were fabricated using sodium alginate with incorporated butterfly pea anthocyanin and agar containing catechin-lysozyme. Cellulose nanospheres were added at concentrations of 0% and 10% w/w of the film and subjected to test at 4 °C and 25 °C, considering different RHs (0%, 50%, and 80%).
View Article and Find Full Text PDFCancer Immunol Immunother
October 2024
Neoantigen vaccines represent an emerging and promising strategy in the field of tumor immunotherapy. Despite their potential, designing an effective neoantigen vaccine remains a challenge due to the current limitations in predicting CD4 T cell epitopes with high accuracy. Here, we introduce a novel approach to neoantigen vaccine design that does not rely on computational prediction of CD4 T cell epitopes.
View Article and Find Full Text PDFAs a promising porous material for CO adsorption and storage, elastic layer-structured metal-organic framework-11 (ELM-11) has attracted significant attention owing to its distinct gate-opening phenomenon. There is a sharp increase in CO uptake once reaching the gate-opening threshold pressure. To better understand this gate-opening mechanism, we investigated its transition process from the perspective of CO dynamics and its interaction with the framework via variable-temperature C solid-state nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFIn recent years, environmental concerns regarding the persistence of petroleum-based plastic food packaging have increased, prompting the exploration of biopolymer alternatives. Carboxymethyl chitosan (CMCS), a derivative of chitosan, exhibits superior water-soluble film properties, making it an ideal material for degradable food packaging applications. This study comprehensively examines the synthesis methods and properties of CMCS, with a particular emphasis on recent advancements in CMCS-based food packaging films.
View Article and Find Full Text PDFBackground: Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) represents an aggressive subtype of HCC and is associated with poor survival.
Purpose: To investigate the performance of a representation learning-based feature fusion strategy that employs a multiphase contrast-enhanced CT (mpCECT)-based latent feature fusion (MCLFF) model for MTM-HCC identification.
Methods: A total of 206 patients (54 MTM HCC, 152 non-MTM HCC) who underwent preoperative mpCECT with surgically confirmed HCC between July 2017 and December 2022 were retrospectively included from two medical centers.
The challenge remains in developing hemostatic dressings that can fulfill both hemostatic and repair functions to meet clinical demands worldwide. Herein, the biodegradable powders composed of benzeneboronic acid-modified sodium alginate/catechol-modified quaternized chitosan hydrogel (SBQCC) networks and bioactive cerium oxide nanoparticles (CNPs), were prepared for hemostasis and promoting wound healing. The SBQCC/CNPs powders had good self-gelation ability, water absorption ratio, tissue adhesiveness and biocompatibility.
View Article and Find Full Text PDFBackground: Hulatang is a traditional specialty snack in Henan, China, and is well known for its unique flavor.
Methods: In this study, the volatile organic compounds (VOCs) in four kinds of Hulatang from two representative regions in Henan Province (Xiaoyaozhen and Beiwudu) were evaluated using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS).
Results: The results showed that Xiaoyaozhen Hulatang exhibited more ethers, fewer terpenes and ketones than Beiwudu Hulatang.
This study utilized gas chromatography-ion mobility spectrometry (GC-IMS) to analyze the volatile flavor compounds present in various commercially available sausages. Additionally, it conducted a comparative assessment of the distinctions among different samples by integrating sensory evaluation with textural and physicochemical parameters. The results of the GC-IMS analysis showed that a total of 65 volatile compounds were detected in the four samples, including 12 hydrocarbons, 11 alcohols, 10 ketones, 9 aldehydes, 12 esters, and 1 acids.
View Article and Find Full Text PDF