Publications by authors named "Wan-ling He"

Genotypic variation of iron bioavailability and the relationship between iron bioavailability and nutrient composition in polished rice among 11 rice genotypes were assessed using an in vitro digestion/Caco-2 cell model. The results indicated that significant differences in iron bioavailability were detected among tested rice genotypes, with a 3-fold range, suggesting a possibility of selecting high bioavailable iron by plant breeding. Although iron bioavailability was not significantly correlated with Fe concentration in polished rice among tested rice genotypes, the results also indicated that most of the iron dense genotypes showed relatively high ferritin formation in Caco-2 cell and transported iron.

View Article and Find Full Text PDF

Two cellulase genes, Cel15 and Cel73, were amplified from Bacillus subtilis genome DNA in a previous study. Two integrative vectors, pLEM4153 and pLEM4154, containing the genes Cel15 and Cel73, respectively, were constructed and successfully electroporated into the wild-type Lactobacillus reuteri which was isolated from chick guts through an optimized procedure. Two recombinant L.

View Article and Find Full Text PDF

The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts.

View Article and Find Full Text PDF

The reduced iron powder has considerable potential for use as an iron fortificant because it does not change organoleptically during storage or food preparation for cereal flour, and its bioavailability is scarcely influenced by iron absorption inhibitors in foods. The objective of this article is to study the effects of ascorbic acid, phytic acid, and pH on iron uptake from reduced iron powder (43 microm) and FeSO 4, and to compare iron bioavailability of reduced iron powders among four selected granularity levels. The cell ferritin formation is used as a marker of iron uptake.

View Article and Find Full Text PDF