Publications by authors named "Wan-Zhou Wu"

Endothelial metabolism is a promising target for vascular functional regulation and disease therapy. Glucose is the primary fuel for endothelial metabolism, supporting ATP generation and endothelial cell survival. Multiple studies have discussed the role of endothelial glucose catabolism, such as glycolysis and oxidative phosphorylation, in vascular functional remodeling.

View Article and Find Full Text PDF

Aim: The slow coronary flow (SCF) phenomenon was characterized by delayed perfusion of epicardial arteries, and no obvious coronary artery lesion in coronary angiography. The prognosis of patients with slow coronary flow was poor. However, there is lack of rapid, simple, and accurate method for SCF diagnosis.

View Article and Find Full Text PDF

Vascular endothelial dysfunction is the major contributing factor to hypertension. Endothelial progenitor cells (EPCs) are essential for endogenous vascular endothelial renovation. The activity and number of circulating EPCs are preserved in prehypertensive premenopausal females according to our previous research.

View Article and Find Full Text PDF

Angiogenesis is critical for re-establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) contribute to the endogenous endothelial repair program during hypercholesterolemia. EPC count and migratory and proliferative capacities remain unchanged in the premenopausal female with hypercholesterolemia. However, the changes of count and activity of circulating EPCs in the hypercholesterolemic postmenopausal females are unknown.

View Article and Find Full Text PDF

Background: Nitrates are widely used to treat coronary artery disease, but their therapeutic value is compromised by nitrate tolerance, because of the dysfunction of prostaglandin I2 synthase (PTGIS). MicroRNAs repress target gene expression and are recognized as important epigenetic regulators of endothelial function. The aim of this study was to determine whether nitrates induce nitrovasodilator resistance via microRNA-dependent repression of PTGIS gene expression.

View Article and Find Full Text PDF