Publications by authors named "Wan-Xue Xu"

Skeletal muscle satellite cells (SMSCs) are pivotal for skeletal muscle regeneration post-injury, and their development is intricately influenced by regulatory factors. Selenoprotein K (SELENOK), an endoplasmic reticulum resident selenoprotein, is known for its crucial role in maintaining skeletal muscle redox sensing. However, the specific molecular mechanism of SELENOK in SMSCs remains unclear.

View Article and Find Full Text PDF

Nuclear receptor coactive 4 (NCOA4) is a specific receptor for ferritinophagy, transporting ferritin to lysosomal degradation, releasing free iron, and excessive iron levels may lead to cellular redox imbalance, contributing to cell death, predominantly ferroptosis. NCOA4 is regulated by a variety of transcriptional, post-transcriptional, translational, and post-translational modifications. Targeted modulation of NCOA4-mediated ferritinophagy has been successfully used as a therapeutic strategy in several disease models.

View Article and Find Full Text PDF

Mercuric chloride (HgCl) is a widespread inorganic mercury with digestive toxicity. The pancreas is an important digestive organ in animals, and pancreatic fibrosis (PF) is a major pathological feature of chronic pancreatitis, which can be caused by heavy metals. Selenium (Se) is an essential trace element for the animal organism, performing biological functions in the form of selenoproteins, as well as alleviating the toxicity of heavy metals.

View Article and Find Full Text PDF

Mercuric chloride (HgCl) is a nephrotoxic contaminant that is widely present in the environment. Selenium (Se) can effectively antagonize the biological toxicity caused by heavy metals. Here, in vivo and in vitro models of Se antagonism to HgCl-induced nephrotoxicity in chickens were established, with the aim of exploring the specific mechanism.

View Article and Find Full Text PDF

Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism.

View Article and Find Full Text PDF

Mercuric chloride (HgCl), a widespread environmental pollutant, induces ferroptosis in chicken embryonic kidney (CEK) cells. Whereas activating transcription factor 4 (ATF4), a critical mediator of oxidative homeostasis, plays a dual role in ferroptosis, but its precise mechanisms in HgCl-induced ferroptosis remain elusive. This study aims to investigate the function and molecular mechanism of ATF4 in HgCl-induced ferroptosis.

View Article and Find Full Text PDF

Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken.

View Article and Find Full Text PDF