Designing solid polymer electrolytes (SPEs) with high ionic conductivity for room-temperature operation is essential for advancing flexible all-solid-state energy storage devices. Innovative strategies are urgently required to develop SPEs that are safe, stable, and high-performing. In this work, we introduce photoexcitation-modulated heterojunctions as catalytically active fillers within SPEs, guided by photocatalytic design principles, and meanwhile employ natural bacterial cellulose to improve the compatibility with poly(ethylene oxide), improve the coordination environment of lithium salts, and optimize both ion transport and mechanical properties.
View Article and Find Full Text PDFStrain engineering has been widely used to optimize platinum-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs). PtM (M is base metals), a well-known high-compressive-strain intermetallic alloy, shows promise as a low platinum ORR catalyst due to high intrinsic activity. However, during the alloying of Pt with a threefold amount of M, a notable phase separation between Pt and M may occur, with M particles rapidly sintering while Pt particles grow slowly, posing a challenge in achieving a well-defined PtM intermetallic alloy.
View Article and Find Full Text PDF