We propose a scheme for realizing nonreciprocal microwave photon routing with two cascaded magnon-cavity coupled systems, which work around the exceptional points of a parity-time (PT)-symmetric Hamiltonian. An almost perfect nonreciprocal transmission can be achieved with a broad bandwidth, where the transmission for a forward-propagating photon can be flexibly controlled with the backpropagating photon being isolated. The transmission or isolated direction can be reversed via simply controlling the magnetic field direction applied to the magnons.
View Article and Find Full Text PDFWe study the enhanced sensing of optomechanically induced nonlinearity (OMIN) in a cavity-waveguide coupled system. The Hamiltonian of the system is anti-PT symmetric, with the two involved cavities being dissipatively coupled via the waveguide. The anti-PT symmetry may break down when a weak waveguide-mediated coherent coupling is introduced.
View Article and Find Full Text PDFNonreciprocal transmission of optical or microwave signals is indispensable in various applications involving sensitive measurements. In this paper, we study optomechanically induced directional amplification and isolation in a generic setup including two cavities and two mechanical oscillators by exclusively using blue-sideband drive tones. The input and output ports defined by the two cavity modes are coupled through coherent and dissipative paths mediated by the two mechanical resonators, respectively.
View Article and Find Full Text PDFWe report an efficient mechanism to generate mechanical entanglement in a two-cascaded cavity optomechanical system with optical parametric amplifiers (OPAs) inside the two coupled cavities. We use the especially tuned OPAs to squeeze the hybrid mode composed of two mechanical modes, leading to strong macroscopic entanglement between the two movable mirrors. The squeezing parameter as well as the effective mechanical damping are both modulated by the OPA gains.
View Article and Find Full Text PDF