Amyloid light chain (AL) amyloidosis is characterized by tissue deposition of amyloid fibres derived from immunoglobulin that can lead to irreversible organ damage. Information about genomic profiles of AL amyloidosis is lacking. In this study, we adopted a two-step strategy to investigate the mutational profile of AL amyloidosis bone marrow plasma cells (PCs) and their clinical implications.
View Article and Find Full Text PDFIn this study, heparin was covalently coupled by glutaraldehyde to Poly(vinyl alcohol) [PVA] in solid-liquid two-phase reaction system by two-step synthesis method to prepare a LDL-selective adsorbent. The parameters (the material ratio, reaction time and dosage of catalyzer) were investigated to evaluate their effect upon the immobilized amount of heparin onto the surface of PVA, IR was used to verify the covalent immobilization result and the heparin-modified PVA was also undergone the evaluation of its adsorption capability for low-density lipoprotein from hyperlipemia plasma, and its hemocompatibility was preliminarily evaluated by platelet adhesion test. Results showed: (1) under optimized reaction conditions the highest immobilization amount of heparin onto PVA surface within the experiments of this study has been obtained; (2) the optimized reaction conditions were: (i) at the refluxing temperature 78 degrees C; (ii) the material ratio of "PVA(g): 50% glutaraldehyde (ml)" was about "1:3"; (iii) the reaction time was about 5 h; and (iv) the amount of catalyzer (concentrated HCL) was about 1% of the 50% glutaraldehyde; (3) within the experiments of this study the highest immobilization amount would be up to 25 microg heparin on the surface of per g PVA granules; (4) the heparin-modified PVA granules showed significant adsorption for LDL under faintly alkaline environment (pH=7.
View Article and Find Full Text PDF