Publications by authors named "Wan-Hua Li"

Glioblastoma, a formidable brain tumor characterized by dysregulated NAD metabolism, poses a significant therapeutic challenge. The NAMPT inhibitor FK866, which induces NAD depletion, has shown promise in controlling tumor proliferation and modifying the tumor microenvironment. However, the clinical efficacy of FK866 as a single drug therapy for glioma is limited.

View Article and Find Full Text PDF

Enzymes are important in homeostasis in living organisms. Since abnormal enzyme activities are highly associated with many human diseases, detection of in vivo activities of a specific enzyme is important to study the pathology of the related diseases. In this work, we have designed and synthesized a series of new small-molecule-activatable fluorescent probes for the imaging of Sterile Alpha and TIR Motif-containing 1 (SARM1) activities based on its transglycosidase activities (base-exchange reactions of NAD).

View Article and Find Full Text PDF

Sterile alpha (SAM) and Toll/interleukin-1 receptor (TIR) motif containing 1 (SARM1) is an autoinhibitory NAD-consuming enzyme that is activated by the accumulation of nicotinamide mononucleotide (NMN) during axonal injury. Its activation mechanism is not fully understood. Here, we generate a nanobody, Nb-C6, that specifically recognizes NMN-activated SARM1.

View Article and Find Full Text PDF

SARM1, an executioner in axon degeneration, is an autoinhibitory NAD-consuming enzyme, composed of multiple domains. NMN and its analogs, CZ-48 and VMN, are the only known activators, which can release the inhibitory ARM domain from the enzymatic TIR domain. Here, we document that acid can also activate SARM1, even more efficiently than NMN, possibly via the protonation of the negative residues.

View Article and Find Full Text PDF

SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog.

View Article and Find Full Text PDF

Abnormal tau accumulation in the brain has a positively correlation with neurodegeneration and memory deterioration, but the mechanism underlying tau-associated synaptic and cognitive impairments remains unclear. Our previous work has found that human full length tau (hTau) accumulation activated signal transducer and activator of transcription-1 (STAT1) to suppress N-methyl-D-aspartate receptors (NMDARs) expression, followed by memory deficits. STAT3 also belongs to STAT protein family and is reported to involve in regulation of synaptic plasticity and cognition.

View Article and Find Full Text PDF

In tauopathies, memory impairment positively strongly correlates with the amount of abnormal tau aggregates; however, how tau accumulation induces synapse impairment is unclear. Recently, we found that human tau accumulation activated Signal Transduction and Activator of Transcription-1 (STAT1) to inhibit the transcription of synaptic N-methyl-D-aspartate receptors (NMDARs). Here, overexpressing human P301L mutant tau (P301L-hTau) increased the phosphorylated level of Signal Transduction and Activator of Transcription-3 (STAT3) at Tyr705 by JAK2, which would promote STAT3 translocate into the nucleus and activate STAT3.

View Article and Find Full Text PDF

Acrylamide (AA) constitutes an important industrial chemical agent and well-known neurotoxin. However, the mechanism underlying AA-mediated neurotoxicity is extremely complicated and controversial. In this study, we found that activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome and its subsequent downstream inflammatory responses plays an important role in AA-induced neurotoxicity mechanisms.

View Article and Find Full Text PDF

SARM1, an NAD-utilizing enzyme, regulates axonal degeneration. We show that CZ-48, a cell-permeant mimetic of NMN, activated SARM1 in vitro and in cellulo to cyclize NAD and produce a Ca messenger, cADPR, with similar efficiency as NMN. Knockout of NMN-adenylyltransferase elevated cellular NMN and activated SARM1 to produce cADPR, confirming NMN was its endogenous activator.

View Article and Find Full Text PDF

Background: Maternal immune activation (MIA) is an independent risk factor for psychiatric disorders including depression spectrum in the offsprings, but the molecular mechanism is unclear. Recent studies show that interferon-stimulated gene-15 (ISG15) is involved in inflammation and neuronal dendrite development; here we studied the role of ISG15 in MIA-induced depression and the underlying mechanisms.

Methods: By vena caudalis injecting polyinosinic: polycytidylic acid (poly I:C) into the pregnant rats to mimic MIA, we used AAV or lentivirus to introduce or silence ISG15 expression.

View Article and Find Full Text PDF

In a previous study, the authors reported that madecassoside (MA) exerted a potent neuroprotective effect against cerebral ischemia-reperfusion (I/R) injury in rats, mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. However, the cellular and molecular bases for its neuroprotective effects have not been fully elucidated. In this study, an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD/R) was used to investigate the role of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway in the neuroprotective and anti-inflammatory effects of MA.

View Article and Find Full Text PDF

Osteoporotic patients often suffer from bone fracture but its healing is compromised due to impaired osteogenesis potential of bone marrow-derived mesenchymal stem cells (BMSCs). Here we aimed to exploit adipose-derived stem cells from ovariectomized rats (OVX-ASCs) for bone healing. We unraveled that OVX-ASCs highly expressed miR-214 and identified 2 miR-214 targets: CTNNB1 (β-catenin) and TAB2.

View Article and Find Full Text PDF

Purpose: We conducted a network meta-analysis to evaluate the efficacy and toxicity of cetuximab and nimotuzumab in the treatment of advanced nasopharyngeal carcinoma (NPC).

Methods: A systematic literature search was performed though Pubmed, Embase, Cochran Library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical (CBM) and Wanfang databases. Totally, 19 randomized controlled trials (RCTs) (n=1201) met the study selection criteria and were incorporated in this network meta-analysis.

View Article and Find Full Text PDF

CD38 catalyzes the synthesis of the Ca messenger, cyclic ADP-ribose (cADPR). It is generally considered to be a type II protein with the catalytic domain facing outside. How it can catalyze the synthesis of intracellular cADPR that targets the endoplasmic Ca stores has not been resolved.

View Article and Find Full Text PDF

Soman is a highly toxic nerve agent with strong inhibition of acetylcholinesterase (AChE), but of the few reactivators showing antidotal efficiency for soman-inhibited AChE presently are all permanently charged cationic oximes with poor penetration of the blood-brain barrier. To overcome this problem, uncharged reactivators have been designed and synthesized, but few of them were efficient for treating soman poisoning. Herein, we used a dual site biding strategy to develop more efficient uncharged reactivators.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) is responsible for the outbreaks of hand-foot-and-mouth disease in the Asia-Pacific region. To produce the virus-like particle (VLP) vaccine, we previously constructed recombinant baculoviruses to co-express EV71 P1 polypeptide and 3CD protease using the Bac-to-Bac(®) vector system. The recombinant baculoviruses resulted in P1 cleavage by 3CD and subsequent VLP assembly in infected insect cells, but caused either low VLP yield or excessive VLP degradation.

View Article and Find Full Text PDF

Madecassoside, a triterpenoid derivative isolated from Centella asiatica, exhibits anti-inflammatory and antioxidant activities. We investigated its neuroprotective effect against ischemia-reperfusion (I/R) injury in cerebral neurons in male Sprague-Dawley rats. Madecassoside (6, 12, or 24mg/kg, i.

View Article and Find Full Text PDF

Background: Autophagy and molecular chaperones both regulate protein homeostasis and maintain important physiological functions. Atg7 (autophagy-related gene 7) and Hsp27 (heat shock protein 27) are involved in the regulation of neurodegeneration and aging. However, the genetic connection between Atg7 and Hsp27 is not known.

View Article and Find Full Text PDF

A new lupane acid, 2beta-carboxyl,3beta-hydroxyl-norlupA (1)-20 (29)-en-28-oic acid (1), together with five known lupane acid derivatives (2-6), were isolated from the stings of Gleditsia sinensis Lam.. Their structures were elucidated on the basis of 1D and 2D NMR techniques.

View Article and Find Full Text PDF

Objective: To study the in vitro antibacterial activity of cefdinir against clinical isolates of respiratory tract pathogens in Children.

Methods: MIC values of cefdinir against 380 strains were determined with E-test method and compared with those of cefaclor.

Results: All penicillin-susceptible Streptococcus pneumoniae (PSSP) strains were also susceptible to cefdinir and cefaclor.

View Article and Find Full Text PDF