TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response.
View Article and Find Full Text PDFIn advanced age, decreased CD8(+) cytotoxic T-lymphocyte (CTL) responses to novel pathogens and cancer is paralleled by a decline in the number and function of naïve CTL precursors (CTLp). Although the age-related fall in CD8(+) T-cell numbers is well established, neither the underlying mechanisms nor the extent of variation for different epitope specificities have been defined. Furthermore, naïve CD8(+) T cells expressing high levels of CD44 accumulate with age, but it is unknown whether this accumulation reflects their preferential survival or an age-dependent driver of CD8(+) T-cell proliferation.
View Article and Find Full Text PDFT-cell receptor (TCR) usage has an important role in determining the outcome of CD8(+) cytotoxic T-lymphocyte responses to viruses and other pathogens. However, the characterization of TCR usage from which such conclusions are drawn is based on exclusive analysis of either the TCRα chain or, more commonly, the TCRβ chain. Here, we have used a multiplexed reverse transcription-PCR protocol to analyse the CDR3 regions of both TCRα and β chains from single naive or immune epitope-specific cells to provide a comprehensive picture of epitope-specific TCR usage and selection into the immune response.
View Article and Find Full Text PDFCeliac disease is a T cell-mediated disease induced by dietary gluten, a component of which is gliadin. 95% of individuals with celiac disease carry the HLA (human leukocyte antigen)-DQ2 locus. Here we determined the T-cell receptor (TCR) usage and fine specificity of patient-derived T-cell clones specific for two epitopes from wheat gliadin, DQ2.
View Article and Find Full Text PDFVirus-specific CTL responses typically fall into reproducible hierarchies with particular epitopes eliciting either immunodominant or subdominant responses after viral challenge. The recently acquired capacity to directly enumerate naive CTL precursors (CTLps) in both mice and humans has implicated CTLp frequency as a key predictor of immune response magnitude after Ag challenge. However, recent studies have indicated that naive CTLp frequencies do not necessarily predict the size of the Ag-driven response, indicating an important role for differential CTLp recruitment and/or expansion.
View Article and Find Full Text PDFBackground: In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and gamma-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells.
View Article and Find Full Text PDFThe serpin alpha(2)-antiplasmin (SERPINF2) is the principal inhibitor of plasmin and inhibits fibrinolysis. Accordingly, alpha(2)-antiplasmin deficiency in humans results in uncontrolled fibrinolysis and a bleeding disorder. alpha(2)-antiplasmin is an unusual serpin, in that it contains extensive N- and C-terminal sequences flanking the serpin domain.
View Article and Find Full Text PDFA balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell.
View Article and Find Full Text PDFProteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown.
View Article and Find Full Text PDFMost serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome.
View Article and Find Full Text PDF