A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD) onto selenium nanoparticle-mesoporous silica composite (MCM-41) matrix and then prepared as a carbon paste electrode (CPE). Cyclic voltammetry was employed to probe the catalytic behavior of the biosensor. A linear calibration plot is obtained over a wide concentration range of glucose from 1 × 10 to 2 × 10 M.
View Article and Find Full Text PDFDouble-walled microspheres based on poly(lactide--glycolide) (PLGA) are potential delivery systems for reducing a very high initial burst release of encapsulated protein and peptide drugs. In this study, double-walled microspheres made of glucose core, hydroxyl-terminated poly(lactide--glycolide) (Glu-PLGA), and carboxyl-terminated PLGA were fabricated using a modified water-in-oil-in-oil-in-water (w1/o/o/w2) emulsion solvent evaporation technique for the controlled release of a model protein, lysozyme. Microspheres size, morphology, encapsulation efficiency, lysozyme in vitro release profiles, bioactivity, and structural integrity, were evaluated.
View Article and Find Full Text PDF