Several water and wastewater technologies have been implored for the removal of dyes during wastewater treatments; however; different types have been reportedly found in surface and groundwater systems. Hence, there is a need to investigate other water treatment technologies for the complete remediation of dyes in aquatic environments. In this study, novel chitosan-based polymer inclusion membranes (PIMs) were synthesized for the removal of malachite green dye (MG) which is a recalcitrant of great concern in water.
View Article and Find Full Text PDFThe presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents.
View Article and Find Full Text PDFChitosan ionic liquid beads were prepared from chitosan and 1-butyl-3-methylimidazolium based ionic liquids to remove Malachite Green (MG) from aqueous solutions. Batch adsorption experiments were carried out as a function of initial pH, adsorbent dosage, agitation time and initial MG concentration. The optimum conditions were obtained at pH 4.
View Article and Find Full Text PDFIn this study, iron impregnated activated carbon (FeAC) was synthesized following an oxidation and iron impregnation of activated carbon (AC). Both the AC and FeAC were characterized by pHZPC and FTIR spectroscopy. The removal of Methylene Blue (MB) by AC and FeAC was examined under various experimental conditions.
View Article and Find Full Text PDFTo enhance the potential of activated carbon (AC), iron incorporation into the AC surface was examined in the present investigations. Iron doped activated carbon (FeAC) material was synthesized and characterized by using surface area analysis, energy dispersive X-ray (EDX), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). The surface area of FeAC (543 m(2)/g) was found to be lower than AC (1043 m(2)/g) as a result of the pores widening due to diffusion of iron particles into the porous AC.
View Article and Find Full Text PDFIn this study, the operational factors affecting the bioregeneration of AO7-loaded MAMS particles in batch system, namely redox condition, initial acclimated biomass concentration, shaking speed and type of acclimated biomass were investigated. The results revealed that with the use of mixed culture acclimated to AO7 under anoxic/aerobic conditions, enhancement of the bioregeneration efficiency of AO7-loaded MAMS and the total removal efficiency of COD could be achieved when the bio-decolorization and bio-mineralization stages were fully aerated with dissolved oxygen above 7 mg/L. Shorter duration of bioregeneration was achieved by using relatively higher initial biomass concentration and lower shaking speed, respectively, whereas variations of biomass concentration and shaking speed did not have a pronounced effect on the bioregeneration efficiency.
View Article and Find Full Text PDFThe objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
View Article and Find Full Text PDFThe potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis.
View Article and Find Full Text PDFJ Environ Sci (China)
August 2009
The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25.
View Article and Find Full Text PDF