Publications by authors named "Wan Rosmiza Zana Wan Dagang"

Chronic wounds typically comprise of necrotic tissue and dried secretions, often culminating in the formation of a thick and tough layer of dead skin known as eschar. Removal of eschar is imperative to facilitate wound healing. Conventional approach for eschar removal involves surgical excision and grafting, which can be traumatic and frequently leads to viable tissue damage.

View Article and Find Full Text PDF

In nature, bacteria are ubiquitous and can be categorized as beneficial or harmless to humans, but most bacteria have one thing in common which is their ability to produce biofilm. Biofilm is encased within an extracellular polymeric substance (EPS) which provides resistance against antimicrobial agents. Protease enzymes have the potential to degrade or promote the growth of bacterial biofilms.

View Article and Find Full Text PDF

Biohydrogen production through dark fermentation is very attractive as a solution to help mitigate the effects of climate change, via cleaner bioenergy production. Dark fermentation is a process where organic substrates are converted into bioenergy, driven by a complex community of microorganisms of different functional guilds. Understanding of the microbiomes underpinning the fermentation of organic matter and conversion to hydrogen, and the interactions among various distinct trophic groups during the process, is critical in order to assist in the process optimisations.

View Article and Find Full Text PDF

The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low.

View Article and Find Full Text PDF

The economics of bioflocculant production is coupled with the use of a low-cost substrate at appropriate culture conditions. The use of a waste substrate for this purpose offers an additional treatment measure to mitigate environmental pollution. We investigated the growth of Aspergillus flavus and its bioflocculant yield using chicken viscera hydrolysate as the sole media.

View Article and Find Full Text PDF

The economy of mass bioflocculant production and its industrial application is couple with the cost of production. The growth medium is the most significant factor that accounts for the production cost. In order to find a substitute for the expensive commercial media mostly the carbon and nitrogen sources used for bioflocculant production, we use chicken viscera as a sole source of nutrient for bioflocculant production.

View Article and Find Full Text PDF