Publications by authors named "Wan Rong Sia"

Inflammasome is linked to many inflammatory diseases, including COVID-19 and autoimmune liver diseases. While severe COVID-19 was reported to exacerbate liver failure, we report a fatal acute-on-chronic liver failure (ACLF) in a stable primary biliary cholangitis-autoimmune hepatitis overlap syndrome patient triggered by a mild COVID-19 infection. Postmortem liver biopsy showed sparse SARS-CoV-2-infected macrophages with extensive ASC (apoptosis-associated speck-like protein containing a CARD) speck-positive hepatocytes, correlating with elevated circulating ASC specks and inflammatory cytokines, and depleted blood monocyte subsets, indicating widespread liver inflammasome activation.

View Article and Find Full Text PDF

Among their many unique biological features, bats are increasingly recognized as a key reservoir of many emerging viruses that cause massive morbidity and mortality in humans. Bats are capable of harboring many of these deadly viruses without any apparent signs of pathology, in a mechanism known as viral disease tolerance. However, the immunological mechanisms behind viral tolerance remain poorly understood.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines.

View Article and Find Full Text PDF

The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2.

View Article and Find Full Text PDF

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood.

View Article and Find Full Text PDF

Bats are reservoir hosts of many zoonotic viruses with pandemic potential. We utilized single-cell transcriptome sequencing (scRNA-seq) to analyze the immune response in bat lungs upon in vivo infection with a double-stranded RNA virus, Pteropine orthoreovirus PRV3M. Bat neutrophils were distinguished by high basal IDO1 expression.

View Article and Find Full Text PDF

MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution HIV-1-infected individuals and rescues their functionality . Single-nucleotide polymorphisms (SNPs) of the gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7.

View Article and Find Full Text PDF

Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight.

View Article and Find Full Text PDF

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e.

View Article and Find Full Text PDF

Bats harbor viruses of global public health significance. Understanding bat immune systems may provide intervention strategies to prevent zoonotic disease transmission and identify therapeutic targets. This protocol describes how to culture and expand pteropid bat unconventional T cells, restricted by the MHC-I-related protein 1 (MR1), an MHC-I-like protein.

View Article and Find Full Text PDF

Bats are reservoirs for a large number of viruses which have potential to cause major human disease outbreaks, including the current coronavirus disease 2019 (COVID-19) pandemic. Major efforts are underway to understand bat immune response to viruses, whereas much less is known about their immune responses to bacteria. In this study, MR1-restricted T (MR1T) cells were detected through the use of MR1 tetramers in circulation and tissues of (Pa) bats.

View Article and Find Full Text PDF

A robust serological test to detect neutralizing antibodies to SARS-CoV-2 is urgently needed to determine not only the infection rate, herd immunity and predicted humoral protection, but also vaccine efficacy during clinical trials and after large-scale vaccination. The current gold standard is the conventional virus neutralization test requiring live pathogen and a biosafety level 3 laboratory. Here, we report a SARS-CoV-2 surrogate virus neutralization test that detects total immunodominant neutralizing antibodies targeting the viral spike (S) protein receptor-binding domain in an isotype- and species-independent manner.

View Article and Find Full Text PDF

Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells.

View Article and Find Full Text PDF

The mucosa-associated invariant T (MAIT) cells represent the most abundant population of antimicrobial T cells in humans. When encountering cells infected with riboflavin-producing bacteria, this innate-like T cell population rapidly release a plethora of pro-inflammatory cytokines, mediates antimicrobial activity, and kill infected cells. Here, we describe methodological approaches and protocols to measure their cytotoxicity and antimicrobial effector function using multi-color flow cytometry-based and standard microbiological techniques.

View Article and Find Full Text PDF

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the MHC class I-like protein MR1. Human MAIT cells predominantly express the CD8α coreceptor (CD8), with a smaller subset lacking both CD4 and CD8 (double-negative, DN). However, it is unclear if these two MAIT cell subpopulations distinguished by CD8α represent functionally distinct subsets.

View Article and Find Full Text PDF