Objective: Unilateral vocal fold paralysis (UVFP) can be caused by iatrogenic injury or tumor-induced damage to the recurrent laryngeal nerve. Studies of comprehensive rehabilitation therapies for patients suffering from severe UVFP are limited. The purpose of this case report is to describe an improvement in complete aphonia after comprehensive rehabilitation therapies in a patient with severe UVFP due to a lung tumor.
View Article and Find Full Text PDFToll-like receptor (TLR) signaling pathways need to be tightly controlled to avoid excessive inflammation and unwanted damage to the host. Myeloid differentiation primary response gene 88 (MyD88) is a critical adaptor of TLR signaling. Here, we identified the speckle-type POZ protein (SPOP) as a MyD88-associated protein.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
November 2017
Objective: The purpose of the study was to examine the effects of laser acupuncture (LA) at right Neiguan (RPC6)/left Neiguan (LPC6) acupoints on the releases of nitric oxide (NO) in the treated and contralateral/nontreated PC6, compared to the nonacupoint control area.
Methods: 24 mW LA at RPC6, LPC6, and nonacupoint in 22 healthy subjects for 40 min: sterilized dialysis tube was taped to the nontreated PC6/nonacupoint during the treatment and immediately taped to the treated and nontreated PC6/nonacupoint after LA removal. NO-scavenging compound was injected into the tube for 40 min to absorb the molecular which was tested by spectrophotometry in a blinded fashion.
Objectives: The aim of this study was to detect the influences of LA at nonacupoint and two adjacent acupoints of pericardium meridian on the releases of NO and sGC in 20 healthy subjects.
Methods: Different intensities (12, 24, 48 mW) of infrared laser were used for irradiating Jianshi (PC5), Ximen (PC4) acupoints and nonacupoint for 20, 40 minutes, respectively. Semi-circular tubes were taped to the skin surface and filled with NO-scavenging compound for 20 minutes to capture NO and sGC, which were measured using spectrophotometry in a blinded fashion.
This study explored the inhibitory effect of the high-power helium-neon (He-Ne) laser on the growth of scars post trauma. For the in vitro study, human wound fibroblasts were exposed to the high-power He-Ne laser for 30 min, once per day with different power densities (10, 50, 100, and 150 mW/cm(2)). After 3 days of repeated irradiation with the He-Ne laser, fibroblast proliferation and collagen synthesis were evaluated.
View Article and Find Full Text PDF