Publications by authors named "Wan Hazman Danial"

Practical benefits of graphene-cellulose composites (GCC) are categorical. Diverse salient features like thermal and electrical conductivity, mechanical strength, and durability make GCC advantageous for widespread applications. Despite extensive studies the basic understanding of various fundamental aspects of this novel complex remains deficient.

View Article and Find Full Text PDF

The increasing levels of carbon dioxide (CO) in the atmosphere may dissolve into the ocean and affect the marine ecosystem. It is crucial to determine the level of dissolved CO in the ocean to enable suitable mitigation actions to be carried out. The conventional electrode materials are expensive and susceptible to chloride ion attack.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs-nanocellulose composites.

View Article and Find Full Text PDF

The study reports on the valorization of municipal grass waste (MGW) for the extraction of cellulose nanocrystals (CNCs), as an eco-friendly and sustainable low-cost precursor for cellulose nanomaterial production. The raw MGW was subjected to boiling in water pretreatment, and alkali and bleaching treatments for the extraction of cellulose fibers, followed by isolation of the CNCs through a conventional acid hydrolysis technique. Fourier transform infrared spectroscopy was used to analyze the cellulose fibers extracted while scanning electron microscopy and transmission electron microscopy images confirmed the presence of cellulose fibers and CNCs, respectively.

View Article and Find Full Text PDF

The study reports on the preparation of cellulose nanocrystals (CNCs) from wastepaper, as an environmental friendly approach of source material, which can be a high availability and low-cost precursor for cellulose nanomaterial processing. Alkali and bleaching treatments were employed for the extraction of cellulose particles followed by controlled-conditions of acid hydrolysis for the isolation of CNCs. Attenuated total reflectance Fourier Transform Infrared (ATR FTIR) spectroscopy was used to analyze the cellulose particles extracted while Transmission electron microscopy images confirmed the presence of CNCs.

View Article and Find Full Text PDF