Publications by authors named "Walz T"

Objectives: U.S. active-duty servicewomen experience barriers to abortion care that civilian women do not experience due to military regulations and federal law.

View Article and Find Full Text PDF

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch.

View Article and Find Full Text PDF
Article Synopsis
  • - Monoclonal antibodies (mAbs) have been used to study the platelet αIIbβ3 protein, and a new mAb called R21D10 was identified that interferes with protein disulfide isomerase (PDI) binding to activated platelets.
  • - R21D10 not only inhibits PDI binding but also affects fibrinogen and PAC-1 binding, as well as platelet aggregation induced by specific peptides, without impacting the binding of other known mAbs against αIIbβ3.
  • - Structural analysis using cryogenic electron microscopy showed that R21D10 binds to a specific domain on β3 integrin and induces conformational changes in αIIbβ3, suggesting a
View Article and Find Full Text PDF

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP).

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved envelope (Env) epitopes to block viral replication. Here, using structural analyses, we provide evidence to explain why a vaccine targeting the membrane-proximal external region (MPER) of HIV-1 elicits antibodies with human bnAb-like paratopes paradoxically unable to bind HIV-1. Unlike in natural infection, vaccination with MPER/liposomes lacks a necessary structure-based constraint to select for antibodies with an adequate approach angle.

View Article and Find Full Text PDF

Multidrug efflux is a well-established mechanism of drug resistance in bacterial pathogens like Typhi. styMdtM (locus name; STY4874) is a multidrug efflux transporter of the major facilitator superfamily expressed in . Typhi.

View Article and Find Full Text PDF

The T-cell receptor (TCR) initiates T-lymphocyte activation, but mechanistic questions remain( ). Here, we present cryogenic electron microscopy structures for the unliganded and human leukocyte antigen (HLA)-bound human TCR-CD3 complex in nanodiscs that provide a native-like lipid environment. Distinct from the "open and extended" conformation seen in detergent( ), the unliganded TCR-CD3 in nanodiscs adopts two related "closed and compacted" conformations that represent its physiologic resting state .

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved epitopes, thereby inhibiting viral entry. Yet surprisingly, those recognizing linear epitopes in the HIV-1 gp41 membrane proximal external region (MPER) are elicited neither by peptide nor protein scaffold vaccines. Here, we observe that while Abs generated by MPER/liposome vaccines may exhibit human bnAb-like paratopes, B-cell programming without constraints imposed by the gp160 ectodomain selects Abs unable to access the MPER within its native "crawlspace".

View Article and Find Full Text PDF

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch.

View Article and Find Full Text PDF

Telomere maintenance requires extension of the G-rich telomeric repeat strand by telomerase and fill-in synthesis of the C-rich strand by Polα/Primase. Telomeric Polα/Primase is bound to Ctc1-Stn1-Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/Primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP).

View Article and Find Full Text PDF

Electromechanical reciprocity - comprising electro-mechanical (EMC) and mechano-electric coupling (MEC) - provides cardiac adaptation to changing physiological demands. Understanding electromechanical reciprocity and its impact on function and heterogeneity in pathological conditions - such as (drug-induced) acquired long QT syndrome (aLQTS) - might lead to novel insights in arrhythmogenesis. Our aim is to investigate how electrical changes impact on mechanical function (EMC) and vice versa (MEC) under physiological conditions and in aLQTS.

View Article and Find Full Text PDF

Vaccines targeting HIV-1's gp160 spike protein are stymied by high viral mutation rates and structural chicanery. gp160's membrane-proximal external region (MPER) is the target of naturally arising broadly neutralizing antibodies (bnAbs), yet MPER-based vaccines fail to generate bnAbs. Here, nanodisc-embedded spike protein was investigated by cryo-electron microscopy and molecular-dynamics simulations, revealing spontaneous ectodomain tilting that creates vulnerability for HIV-1.

View Article and Find Full Text PDF

Inhibitors of integrin αVβ3 have therapeutic promise for a variety of diseases. Most αVβ3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbβ3, we searched for pure αVβ3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically β3 E220.

View Article and Find Full Text PDF

Human shelterin is a six-subunit complex-composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits.

View Article and Find Full Text PDF

The CST-Polα/primase complex is essential for telomere maintenance and functions to counteract resection at double-strand breaks. We report a 4.6-Å resolution cryo-EM structure of human CST-Polα/primase, captured prior to catalysis in a recruitment state stabilized by chemical cross-linking.

View Article and Find Full Text PDF

Advances in cryogenic electron microscopy (cryo-EM) enabled routine near-atomic structure determination of membrane proteins, while nanodisc technology has provided a way to provide membrane proteins with a native or native-like lipid environment. After giving a brief history of membrane mimetics, we present example structures of membrane proteins in nanodiscs that revealed information not provided by structures obtained in detergent. We describe how the lipid environment surrounding the membrane protein can be custom designed during nanodisc assembly and how it can be modified after assembly to test functional hypotheses.

View Article and Find Full Text PDF

Quinolone resistance in bacterial pathogens has primarily been associated with mutations in the quinolone resistance-determining regions (QRDRs) of bacterial type-II topoisomerases, which are DNA gyrase and topoisomerase IV. Depending on the position and type of the mutation (s) in the QRDRs, bacteria either become partially or completely resistant to quinolone. QRDR mutations have been identified and characterized in isolates from around the globe, particularly during the last decade, and efforts have been made to understand the propensity of different serovars to carry such mutations.

View Article and Find Full Text PDF

Mechanosensitive (MS) channels that are activated by the 'force-from-lipids' (FFL) principle rest in the membrane in a closed state but open a transmembrane pore in response to changes in the transmembrane pressure profile. The molecular implementations of the FFL principle vary widely between different MS channel families. The function of MS channels is often studied by patch-clamp electrophysiology, in which mechanical force or amphipathic molecules are used to activate the channels.

View Article and Find Full Text PDF

The bacterial mechanosensitive channel of small conductance (MscS) has been extensively studied to understand how mechanical forces are converted into the conformational changes that underlie mechanosensitive (MS) channel gating. We showed that lipid removal by β-cyclodextrin can mimic membrane tension. Here, we show that all cyclodextrins (CDs) can activate reconstituted MscS, that MscS activation by CDs depends on CD-mediated lipid removal, and that the CD amount required to gate MscS scales with the channel's sensitivity to membrane tension.

View Article and Find Full Text PDF

Salmonellae are foodborne pathogens and the major cause of gastroenteritis in humans. Salmonellae express multidrug efflux transporters that play a key role in their drug resistance, which is becoming an increasing problem for therapeutic intervention. Despite their biomedical importance, the mechanisms underlying substrate transport by multidrug efflux transporters remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The murine mAb PT25-2 promotes platelet aggregation by causing the αIIbβ3 receptor to bind ligands, though its mechanism was previously unknown.
  • Recent studies using cryo-electron microscopy and negative-stain techniques revealed that PT25-2 binding partially exposes ligand-binding sites and alters the αIIbβ3 receptor's structure without triggering the typical conformational changes seen in other binding scenarios.
  • The research suggests that PT25-2 prefers to attach to extended forms of the receptor, hindering its ability to revert to a bent shape, thus facilitating ligand binding necessary for platelet activation.
View Article and Find Full Text PDF

Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes. However, how exactly they sense mechanical force remains under investigation. The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels, but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin.

View Article and Find Full Text PDF

Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates.

View Article and Find Full Text PDF

McrBC complexes are motor-driven nucleases functioning in bacterial self-defense by cleaving foreign DNA. The GTP-specific AAA + protein McrB powers translocation along DNA and its hydrolysis activity is stimulated by its partner nuclease McrC. Here, we report cryo-EM structures of Thermococcus gammatolerans McrB and McrBC, and E.

View Article and Find Full Text PDF