A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20151-x.
View Article and Find Full Text PDFProperties of semiconductors are largely defined by crystal imperfections including native defects. Van der Waals (vdW) semiconductors, a newly emerged class of materials, are no exception: defects exist even in the purest materials and strongly affect their electrical, optical, magnetic, catalytic and sensing properties. However, unlike conventional semiconductors where energy levels of defects are well documented, they are experimentally unknown in even the best studied vdW semiconductors, impeding the understanding and utilization of these materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Effects of a humid environment on the degradation of semiconductors were studied to understand the role of the surface charge on material stability. Two distinctly different semiconductors with the Fermi level stabilization energy located inside the conduction band (CdO) and valence band (SnTe) were selected, and effects of an exposure to 85 °C and 85% relative humidity conditions on their electrical properties were investigated. Undoped CdO films with bulk Fermi level below and positively charged surface are very unstable.
View Article and Find Full Text PDFThree-dimensional band structure of rock-salt (rs) CdZnO (x = 1.0, 0.83, and 0.
View Article and Find Full Text PDFThe past few years have witnessed unprecedented rapid improvement of the performance of a new class of photovoltaics based on halide perovskites. This progress has been achieved even though there is no generally accepted mechanism of the operation of these solar cells. Here we present a model based on bistable amphoteric native defects that accounts for all key characteristics of these photovoltaics and explains many idiosyncratic properties of halide perovskites.
View Article and Find Full Text PDFIn this work, we have synthesized CdGaO alloy thin films at room temperature over the entire composition range by radio frequency magnetron sputtering. We found that alloy films with high Ga contents of x > 0.3 are amorphous.
View Article and Find Full Text PDFDoping of traditional semiconductors has enabled technological applications in modern electronics by tailoring their chemical, optical and electronic properties. However, substitutional doping in two-dimensional semiconductors is at a comparatively early stage, and the resultant effects are less explored. In this work, we report unusual effects of degenerate doping with Nb on structural, electronic and optical characteristics of MoS crystals.
View Article and Find Full Text PDFThe electronic band structure of phosphorus-rich GaNPAs alloys (x ~ 0.025 and y ≥ 0.6) is studied experimentally using optical absorption, photomodulated transmission, contactless electroreflectance, and photoluminescence.
View Article and Find Full Text PDFPhotoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E and upper E valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model.
View Article and Find Full Text PDFGaNSb with x∼5%-7% is a highly mismatched alloy predicted to have favorable properties for application as an electrode in a photoelectrochemical cell for solar water splitting. In this study, we grew GaNSb under conditions intended to induce phase segregation. Prior experiments with the similar alloy GaNAs, the tendency of Sb to surfact, and the low growth temperatures needed to incorporate Sb all suggested that GaNSb alloys would likely exhibit phase segregation.
View Article and Find Full Text PDFComposites are a class of materials that are formed by mixing two or more components. These materials often have new functional properties compared to their constituent materials. Traditionally composites are formed by self-assembly due to structural dissimilarities or by engineering different layers or structures in the material.
View Article and Find Full Text PDFSimultaneous increases in electrical conductivity (up to 200%) and thermopower (up to 70%) are demonstrated by introducing native defects in Bi2 Te3 films, leading to a high power factor of 3.4 × 10(-3) W m(-1) K(-2). The maximum enhancement of the power factor occurs when the native defects act beneficially both as electron donors and energy filters to mobile electrons.
View Article and Find Full Text PDFThe ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature T(C). It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band.
View Article and Find Full Text PDFUsing the unique features of the electronic band structure of GaN(x)As(1-x) alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the band anticrossing model of the electronic structure of highly mismatched alloys.
View Article and Find Full Text PDFWe have investigated the effect of partial isovalent anion substitution in Ga1-xMnxAs on electrical transport and ferromagnetism. Substitution of only 2.4% of As by P induces a metal-insulator transition at a constant Mn doping of x=0.
View Article and Find Full Text PDFWe have calculated the effects of quantum confinement on maximum achievable free carrier concentrations in semiconductor nanowires. Our calculations are based on the amphoteric defect model, which describes the thermodynamic doping limit in semiconductors in terms of the compensation of external dopants by native defects. We find that the generation of amphoteric native defects strongly limits maximum achievable carrier concentrations for nanowires with small widths where quantum confinement is appreciable.
View Article and Find Full Text PDFThe first evidence of successful p-type doping of InN is presented. It is shown that InN:Mg films consist of a p-type bulk region with a thin n-type inversion layer at the surface that prevents electrical contact to the bulk. Capacitance-voltage measurements indicate a net concentration of ionized acceptors below the -type surface.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
June 2005
Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) have been used to study compositional modulation in In(x)Ga(1-x) N layers grown with compositions close to miscibility gap. The samples (0.34 < x < 0.
View Article and Find Full Text PDFWe report the realization of a new mult-band-gap semiconductor. Zn(1-y)Mn(y)OxTe1-x alloys have been synthesized using the combination of oxygen ion implantation and pulsed laser melting. Incorporation of small quantities of isovalent oxygen leads to the formation of a narrow, oxygen-derived band of extended states located within the band gap of the Zn(1-y)Mn(y)Te host.
View Article and Find Full Text PDFThe alloy GaN(x) As(1-x) (with x typically less than 0.05) is a novel semiconductor that has many interesting electronic properties because of the nitrogen-induced dramatic modifications of the conduction band structure of the host material (GaAs). Here we demonstrate the existence of an entirely new effect in the GaN(x) As(1-x) alloy system in which the Si donor in the substitututional Ga site (Si(Ga)) and the isovalent atom N in the As sublattice (N(As)) passivate each other's electronic activity.
View Article and Find Full Text PDFThe most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices.
View Article and Find Full Text PDFWe report a strongly nonlinear pressure dependence of the band gaps and large downward shifts of the conduction band edges as functions of composition in ZnS xTe (1-x) and ZnSe (y)Te (1-y) alloys. The dependencies are explained by an interaction between localized A1 symmetry states of S or Se atoms and the extended states of the ZnTe matrix. These results, combined with previous studies of III-N-V materials define a new, broad class of semiconductor alloys in which the introduction of highly electronegative atoms leads to dramatic modifications of the conduction band structure.
View Article and Find Full Text PDFPhys Rev B Condens Matter
January 1996