We propose a new, simple and efficient procedure of light-driven deoxygenation of solutions based on hydroperoxides formation upon irradiation. Efficient and fast removal of molecular oxygen is caused by photosensitized generation of singlet oxygen, which then reacts with the solvent (2-methyltetrahydrofuran or tetrahydrofuran). Oxygen depletion makes it possible to observe processes normally undetectable in non-degassed liquid samples at room temperature, such as phosphorescence and triplet-triplet annihilation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Porphyrins and their isomers possess high affinity towards the formation of complexes with metal cations, but their use for the determination of metal cations is rather limited, due to low selectivity. In this study, we have investigated the unsubstituted hemiporphycene, which shows a highly irregular shape of the inner cavity, and very different reactivity with various metal cations in methanol:water solutions. It was found that hemiporphycene can act as a pH-tunable specific probe for the determination of Zn at pH 8.
View Article and Find Full Text PDFControlling spectral properties to achieve desired characteristics is an attractive goal in application-oriented research, , in the design of fluorescence sensors. "Soft" chromophores, molecules with strong spectral responses to internal or external perturbations are good candidates for such studies. In this work, absorption, fluorescence, and magnetic circular dichroism (MCD) spectra were obtained for a series of porphyrins, substituted at the meso-positions with -hexyl groups.
View Article and Find Full Text PDFProton or hydrogen transfers, basic chemical reactions, proceed either by thermally activated barrier crossing or via tunneling. Studies of molecules undergoing single or double proton or hydrogen transfer in the ground or excited electronic state reveal that tunneling can dominate under conditions usually considered to favor the thermal process. Moreover, the tunneling probability strongly varies for excitation of certain vibrational modes, which changes the effective barrier and/or proton transfer distance.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2023
Comparison of photostability in degassed and aerated toluene solutions is reported for 5,10,15,20-tetraphenylporphyrin, 5,10,15-tri(p-tolyl)porphyrin, and their zinc analogues. After degassing, quantum yields of photodegradation are higher, but the photodecomposition rates decrease. Lower stability in deoxygenated solutions is due to much longer triplet lifetimes: 200-300 microseconds, compared to 200-360 ns in non-degassed toluene.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2023
We present a study on the excitation of individual vibrational modes with ballistic charge carriers propagating along the Cu(110) surface. By means of the molecular nanoprobe technique, where the reversible switching of a molecule-in this case tautomerization of porphycene-is utilized to detect excitation events, we reveal anisotropic coupling of two distinct vibrational modes to the substrate. The N-H bending mode, excited below || ≈ 376 meV, exhibits maxima perpendicular to the rows of the Cu(110) substrate and minima along the rows.
View Article and Find Full Text PDFIn this study, the intrinsic surface-enhanced Raman spectroscopy (SERS)-based approach coupled with chemometric analysis was adopted to establish the biochemical fingerprint of SARS-CoV-2 infected human fluids: saliva and nasopharyngeal swabs. The numerical methods, partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC), facilitated the spectroscopic identification of the viral-specific molecules, molecular changes, and distinct physiological signatures of pathetically altered fluids. Next, we developed the reliable classification model for fast identification and differentiation of negative CoV(-) and positive CoV(+) groups.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2023
We have studied 22-oxahemiporphycene molecules by a combination of scanning tunneling microscopy at low temperatures and density functional theory calculations. In contrast to other molecular switches with typically two switching states, these molecules can in principle exist in three different tautomers, due to their asymmetry and three inequivalent binding positions of a hydrogen atom in their macrocycle. Different tautomers are identified from the typical appearance on the surface and tunneling electrons can be used to tautomerize single molecules in a controllable way with the highest rates if the STM tip is placed close to the hydrogen binding positions in the cavity.
View Article and Find Full Text PDFParent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra--propylporphycene and 2,7,12,17-tetra--butylporphycene were substituted at the position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state.
View Article and Find Full Text PDFNormal and heavy water are solvents most commonly used to study the isotope effect. The isotope effect of a solvent significantly influences the behavior of a single molecule in a solution, especially when there are interactions between the solvent and the solute. The influence of the isotope effect becomes more significant in DO/HO since the hydrogen bond in HO is slightly weaker than its counterpart (deuterium bond) in DO.
View Article and Find Full Text PDFThe photochemistry of a cyclic β-thioxoketone (2-methyl-1-(2-thioxycyclohexyl)propan-1-one (MTPO)) is investigated by NMR, UV, and IR experiments supported by DFT calculations. MTPO exists as a tautomeric mixture of an enol and a thiol form. Irradiation at low temperature led to a - isomerization of the thiol form resulting in a rather unusual enethiol (3).
View Article and Find Full Text PDF2,5-Bis(6-methyl-2-benzoxazolyl)phenol () exhibits an ultrafast excited-state intramolecular proton transfer (ESIPT) when isolated in supersonic jets, whereas in condensed phases the phototautomerization is orders of magnitude slower. This unusual situation leads to nontypical photophysical characteristics: dual fluorescence is observed for in solution, whereas only a single emission, originating from the phototautomer, is detected for the ultracold isolated molecules. In order to understand the completely different behavior in the two regimes, detailed photophysical studies have been carried out.
View Article and Find Full Text PDFThe surface-enhanced Raman spectroscopy (SERS) detection limit strongly depends on the molecular structure, which we demonstrate for a family of tert-butyl-substituted porphycenes. Even though the investigated species present very similar photophysical properties, the ratio between the SERS signal and fluorescence background depends on the number of bulky tert-butyl groups. Moreover, the probability of single molecule detection systematically drops with the number of the moieties attached to the pyrrole ring.
View Article and Find Full Text PDFStrong coupling between vibrational transitions and a vacuum field of a cavity mode leads to the formation of vibrational polaritons. These hybrid light-matter states have been widely explored because of their potential to control chemical reactivity. However, the possibility of altering Raman scattering through the formation of vibrational polaritons has been rarely reported.
View Article and Find Full Text PDFPlasmonic nanostructures, of which gold nanoparticles are the most elementary example, owe their unique properties to localized surface plasmons (LSP), the modes of free electron oscillation. LSP alter significantly electromagnetic field in the nanostructure neighborhood (i.e.
View Article and Find Full Text PDFThe surface-enhanced Raman scattering (SERS) has been widely tested for its usefulness in microbiological studies, providing many information-rich spectra which are a kind of 'whole-organism fingerprint' and enabling identification of bacterial species. Here we show, previously not considered, the comprehensive SERS-chemometric analysis of five bacterial pathogens, namely Neisseria gonorrhoeae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum, and Haemophilus ducreyi, all being responsible for sexually transmitted diseases (STDs). In the designed biosensor, the direct, intrinsic format of the spectroscopic analysis was adopted for the SERS-based screening of gonorrhea and chlamydiosis due to vibrational analysis of men's urethra swabs.
View Article and Find Full Text PDFPhotobleaching of single molecules has been studied using confocal fluorescence microscopy for porphycene, a porphyrin isomer, and its two derivatives. Fourfold substitution of porphycene with bulky-butyl groups leads to the enhancement of photostability, even though the spectral, photophysical, and redox parameters remain similar. We attribute this effect to the increase of the efficiency of physical quenching of the chromophore triplet state by oxygen, compared with the yield of chemical reaction that leads to photobleaching.
View Article and Find Full Text PDFPorphycene, a porphyrin isomer, is an efficient fluorophore. However, four-fold meso substitution with alkyl groups decreases the fluorescence quantum yield by orders of magnitude. For aryl substituents, this effect is small.
View Article and Find Full Text PDFSix porphycenes have been synthesized, bearing one, two, or three fluorine atoms attached directly to the 18-π-electron system at the meso positions. These novel compounds have been characterized by structural, electrochemical, and spectral techniques, combined with quantum chemical calculations. In three fluoroporphycenes, the unsymmetric substitution pattern leads to the presence of two nonequivalent trans tautomeric forms.
View Article and Find Full Text PDFJ Phys Chem A
October 2020
Absorption and magnetic circular dichroism (MCD) spectra have been measured and theoretically simulated for a series of palladium octaethylporphyrins substituted at the positions with phenyl groups ( = 0-4). Analysis of the spectra included the perimeter model and time-dependent density functional theory (TDDFT) calculations. With the increasing number of phenyl substituents, the molecule is transformed from a positive hard (ΔHOMO > ΔLUMO) to a soft (ΔHOMO ≈ ΔLUMO) chromophore.
View Article and Find Full Text PDFWe performed time-resolved transient absorption and fluorescence anisotropy measurements in order to study tautomerization of porphycene in rigid polymer matrices at cryogenic temperatures. Studies were carried out in poly(methyl methacrylate) (PMMA), poly(vinyl butyral) (PVB), and poly(vinyl alcohol) (PVA). The results prove that in all studied media hydrogen tunnelling plays a significant role in the double hydrogen transfer which becomes very sensitive to properties of the environment below approx.
View Article and Find Full Text PDFMethods Appl Fluoresc
July 2020
The accurate, periodically updated excitation beam intensity correction is essential for conducting fluorescence spectroscopy research. This article describes a simple and inexpensive approach to reevaluate the excitation calibration curve of a spectrofluorometer using a single dye solution. The method shows excellent agreement with the data obtained using a certified calibration detector for the broad spectral range from 290 nm to 700 nm.
View Article and Find Full Text PDFFree base and zinc porphyrins functionalized with cyclooctatetraene (COT), a molecule known as a good triplet-state quencher, have been obtained and characterized in detail by structural, spectral, and photophysical techniques. Substitution with COT leads to a dramatic decrease of the intrinsic lifetime of the porphyrin triplet. As a result, photostability in oxygen-free solution increases by two to three orders of magnitude.
View Article and Find Full Text PDFThe strong coupling of an IR-active molecular transition with an optical mode of the cavity results in vibrational polaritons, which opens a new way to control chemical reactivity via confined electromagnetic fields of the cavity. In this study, we design a voltage-tunable open microcavity and we show the formation of multiple vibrational polaritons in methyl salicylate. A Rabi splitting and polariton anticrossing behavior is observed when the cavity mode hybridizes with the C═O stretching vibration of methyl salicylate.
View Article and Find Full Text PDF