It is common practice in the development of bioprocesses to genetically modify a microorganism and study a large number of resulting mutants in order to select the ones that perform best for use at the industrial scale. At industrial scale, strict nutrient-controlled growth conditions are imposed to control the metabolic activity and growth rate of the microorganism, thereby enhancing the expression of the product of interest. Although it is known that microorganisms that perform best under these strictly controlled conditions are not the same as the ones that perform best under uncontrolled batch conditions, screening, and selection is predominantly performed under batch conditions.
View Article and Find Full Text PDFIn large-scale bioreactors, there is often insufficient mixing and as a consequence, cells experience uneven substrate and oxygen levels that influence product formation. In this study, the influence of dissolved oxygen (DO) gradients on the primary and secondary metabolism of a high producing industrial strain of was investigated. Within a wide range of DO concentrations, obtained under chemostat conditions, we observed different responses from : (i) no influence on growth or penicillin production (>0.
View Article and Find Full Text PDFUnderstanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions.
View Article and Find Full Text PDFCarbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance.
View Article and Find Full Text PDFProduct yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with the yeast . This paper reviews pathway engineering strategies for improving ethanol yield on glucose and/or sucrose in anaerobic cultures of this yeast by altering the ratio of ethanol production, yeast growth and glycerol formation. Particular attention is paid to strategies aimed at altering energy coupling of alcoholic fermentation and to strategies for altering redox-cofactor coupling in carbon and nitrogen metabolism that aim to reduce or eliminate the role of glycerol formation in anaerobic redox metabolism.
View Article and Find Full Text PDFObtaining meaningful snapshots of the metabolome of microorganisms requires rapid sampling and immediate quenching of all metabolic activity, to prevent any changes in metabolite levels after sampling. Furthermore, a suitable extraction method is required ensuring complete extraction of metabolites from the cells and inactivation of enzymatic activity, with minimal degradation of labile compounds. Finally, a sensitive, high-throughput analysis platform is needed to quantify a large number of metabolites in a small amount of sample.
View Article and Find Full Text PDFIntracellular metabolites were evaluated during the continuous growth of Trichoderma harzianum P49P11 under carbon-limited conditions. Four different conditions in duplicate were investigated (10 and 20 g/L of glucose, 5.26/5.
View Article and Find Full Text PDFCarbon-limited chemostat cultures were performed using different carbon sources (glucose, 10 and 20 g/L; sucrose, 10 g/L; fructose/glucose, 5.26/5.26 g/L; carboxymethyl cellulose, 10 g/L; and carboxymethyl cellulose/glucose, 5/5 g/L) to verify the capability of the wild type strain Trichoderma harzianum to produce extracellular enzymes.
View Article and Find Full Text PDFThis study explores the relation between biomass-specific succinic acid (SA) production rate and specific growth rate of an engineered industrial strain of Saccharomyces cerevisiae, with the aim to investigate the extent to which growth and product formation can be uncoupled. Ammonium-limited aerobic chemostat and retentostat cultures were grown at different specific growth rates under industrially relevant conditions, that is, at a culture pH of 3 and with sparging of a 1:1 CO -air mixture. Biomass-specific SA production rates decreased asymptotically with decreasing growth rate.
View Article and Find Full Text PDFElucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions.
View Article and Find Full Text PDFThe wild type strain Trichoderma harzianum was able to synthesize enzymes that can catalyse the hydrolysis of p-nitrophenyl-β-D-glucopyranoside (PNPGase) in glucose-limited chemostat cultures. Fructose/glucose and sucrose conditions provided low levels of PNPGase activity. To investigate whether under these conditions other enzymes were produced, a shotgun proteomics analysis of their supernatants was performed.
View Article and Find Full Text PDFWe developed a microfluidic droplet on-demand (DoD) generator that enables the production of droplets with a volume solely governed by the geometry of the generator for a range of operating conditions. The prime reason to develop this novel type of DoD generator is that its robustness in operation enables scale out and operation under non-steady conditions, which are both essential features for the further advancement of droplet-based assays. We first detail the working principle of the DoD generator and study the sensitivity of the volume of the generated droplets with respect to the used fluids and control parameters.
View Article and Find Full Text PDFRedox metabolism plays an essential role in the central metabolic network of all living cells, connecting, but at the same time separating, catabolic and anabolic pathways. Redox metabolism is inherently linked to the excretion of overflow metabolites. Overflow metabolism allows for higher substrate uptake rates, potentially outcompeting other microorganisms for the same substrate.
View Article and Find Full Text PDFEngineered strains of Saccharomyces cerevisiae are used for industrial production of succinic acid. Optimal process conditions for dicarboxylic-acid yield and recovery include slow growth, low pH, and high CO . To quantify and understand how these process parameters affect yeast physiology, this study investigates individual and combined impacts of low pH (3.
View Article and Find Full Text PDFSo far, the physiology of at near-zero growth rates has been studied in retentostat cultures with a growth-limiting supply of the carbon and energy source. Despite its relevance in nature and industry, the near-zero growth physiology of under conditions where growth is limited by the supply of non-energy substrates remains largely unexplored. This study analyzes the physiology of in aerobic chemostat and retentostat cultures grown under either ammonium or phosphate limitation.
View Article and Find Full Text PDFDuring glucose-limited growth, a substantial input of adenosine triphosphate (ATP) is required for the production of β-lactams by the filamentous fungus Penicillium chrysogenum. Formate dehydrogenase has been confirmed in P. chrysogenum for formate oxidation allowing an extra supply of ATP, and coassimilation of glucose and formate has the potential to increase penicillin production and biomass yield.
View Article and Find Full Text PDFTargeted, quantitative metabolomics can, in principle, provide precise information on intracellular metabolite levels, which can be applied to accurate modeling of intracellular processes required in systems biology and metabolic engineering. However, quantitative metabolite profiling is often hampered by biased mass spectrometry-based analyses caused by matrix effects, the degradation of metabolites and metabolite leakage during sample preparation, and unexpected variation in instrument responses. Isotope Dilution Mass Spectrometry (IDMS) has been proven as the most accurate method for high-throughput detection of intracellular metabolite concentrations, and the key has been the acquisition of the corresponding fully uniformly (U) -C-labeled metabolites to be measured.
View Article and Find Full Text PDFIn a 54 m large-scale penicillin fermentor, the cells experience substrate gradient cycles at the timescales of global mixing time about 20-40 s. Here, we used an intermittent feeding regime (IFR) and a two-compartment reactor (TCR) to mimic these substrate gradients at laboratory-scale continuous cultures. The IFR was applied to simulate substrate dynamics experienced by the cells at full scale at timescales of tens of seconds to minutes (30 s, 3 min and 6 min), while the TCR was designed to simulate substrate gradients at an applied mean residence time (τc) of 6 min.
View Article and Find Full Text PDFBioprocess Biosyst Eng
February 2018
In its natural environment, the filamentous fungus Aspergillus niger grows on decaying fruits and plant material, thereby enzymatically degrading the lignocellulosic constituents (lignin, cellulose, hemicellulose, and pectin) into a mixture of mono- and oligosaccharides. To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose, and galacturonic acid) and a mixture of these. Growth on these substrates was characterized in terms of biomass yields, oxygen/biomass ratios, and specific conversion rates.
View Article and Find Full Text PDFIn the present work, by performing chemostat experiments at 400 and 600 RPM, two typical power inputs representative of industrial penicillin fermentation (P/V, 1.00 kW/m in more remote zones and 3.83 kW/m in the vicinity of the impellers, respectively) were scaled-down to bench-scale bioreactors.
View Article and Find Full Text PDFEfficient optimization of microbial processes is a critical issue for achieving a number of sustainable development goals, considering the impact of microbial biotechnology in agrofood, environment, biopharmaceutical and chemical industries. Many of these applications require scale-up after proof of concept. However, the behaviour of microbial systems remains unpredictable (at least partially) when shifting from laboratory-scale to industrial conditions.
View Article and Find Full Text PDFBackground: The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e.
View Article and Find Full Text PDFA powerful approach for the optimization of industrial bioprocesses is to perform detailed simulations integrating large-scale computational fluid dynamics (CFD) and cellular reaction dynamics (CRD). However, complex metabolic kinetic models containing a large number of equations pose formidable challenges in CFD-CRD coupling and computation time afterward. This necessitates to formulate a relatively simple but yet representative model structure.
View Article and Find Full Text PDFCurrently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S.
View Article and Find Full Text PDF