Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E.
View Article and Find Full Text PDFHospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks.
View Article and Find Full Text PDFThe contamination of drinking water resources by toxic metals is a major problem in many parts of the world, particularly in dense populated areas of developing countries that lack wastewater treatment facilities. The present study characterizes the recent evolution with time of some contaminants deposited in the Congo River and Lake Ma Vallée, both located in the vicinity of the large city of Kinshasa, capital of Democratic Republic of Congo (DRC). Physicochemical parameters including grain size distribution, organic matter and trace element concentrations were measured in sediment cores sampled from Congo River (n = 3) and Lake Ma Vallée (n = 2).
View Article and Find Full Text PDFChemosphere
September 2014
This paper discusses the occurrence and spatial distribution of metals and persistent organic pollutants (POPs: including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), Polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) in sediments from a river-reservoir system. Surface sediments were sampled from thirteen sites of the Congo River Basin and Lake Ma Vallée, both situated in the vicinity of the capital city Kinshasa (Congo Democratic Republic). Sediment qualities were evaluated using toxicity test based on exposing Ostracods to the sediment samples.
View Article and Find Full Text PDFThis study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts.
View Article and Find Full Text PDFChemosphere
October 2013
Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg.
View Article and Find Full Text PDFChemosphere
March 2013
The (137)Cs and (210)Pb dating of a 61-cm long sediment core retrieved from a drinking water reservoir (Lake Brêt) located in Switzerland revealed a linear and relatively high sedimentation rate (~1 cm year(-1)) over the last decades. The continuous centimeter scale measurement of physical (porewater and granulometry), organic (C(org), P, N, HI and OI indexes) and mineral (C(min) and lithogenic trace elements) parameters therefore enables reconstructing the environmental history of the lake and anthropogenic pollutant input (trace metals, DDT and PCBs) at high resolution. A major change in the physical properties of the lowermost sediments occurred following the artificial rise of the dam in 1922.
View Article and Find Full Text PDFThis study characterized the fecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enteroccocus (ENT), disseminated over time in the Bay of Vidy, which is the most contaminated area of Lake Geneva. Sediments were collected from a site located at ∼500 m from the present waste water treatment plant (WWTP) outlet pipe, in front of the former WWTP outlet pipe, which was located at only 300 m from the coastal recreational area (before 2001).
View Article and Find Full Text PDFThis study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van).
View Article and Find Full Text PDFThis research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge.
View Article and Find Full Text PDFVariation with depth and time of organic matter (carbon, nitrogen, phosphorus), inorganic pollutant (mercury), as well as bacterial abundance and activity, were investigated for the first time in sediment profiles of different parts of Lake Geneva (Switzerland) over the last decades. The highest organic contents (about 32%), mercury concentration (27 mg kg(-1)), bacterial abundance (in order of 9×10(9) cell g(-1) dry sediment), and bacterial activity (1299 Relative Light Units (RLU)) were found in the highly polluted sediments contaminated by the waste water treatment plant (WWTP) discharge, which deposited during the period of cultural eutrophication. Such data, which contrast with the other sampled sites from deeper and more remote parts of the lake, prove that the organic matter and nutrients released from the municipal WWTP have considerable effects on bacterial abundance and activities in freshwater sediments.
View Article and Find Full Text PDFThe aim of this study was to compare the composition of bacterial and archaeal communities in contaminated sediments (Vidy Bay) with uncontaminated sediments (Ouchy area) of Lake Geneva using 16S rRNA clone libraries. Sediments of both sites were analysed for physicochemical characteristics including porewater composition, organic carbon, and heavy metals. Results show high concentrations of contaminants in sediments from Vidy.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2010
In situ microcosm study investigated both the kinetics of plant material mass loss and qualitative and quantitative aspects of DNA content by researching leaf degradation of two specific varieties of tomato (Admiro and Palmiro) in freshwater column incubated for 40 days. A two-compartment first order model fitted both tomato dry matter and DNA content mass loss well. The composite half-decrease times were, respectively, 1.
View Article and Find Full Text PDFThe long-term physical persistence and biological activity of transplastomic plant DNA (transgenes contained in the chloroplast genome) either purified and added to soil or naturally released by decaying tobacco leaves in soil was determined. Soil microcosms were amended with transplastomic tobacco leaves or purified plant DNA and incubated for up to 4 years. Total DNA was extracted from soil and the number of transgenes (aadA, which confers resistance to both spectinomycin and streptomycin) was quantified by quantitative PCR.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2010
Unsaturated soil columns were used to examine the transport of the plasmid pLEPO1 and plant DNA (transplastomic tobacco DNA), both carrying an antibiotic resistance gene (aadA gene), and the capacity of bacteria to incorporate the gene in their genome after its passage through the soil. Soil columns containing a top leaf layer had sterile water percolated through them at a rate of 0.5mLh(-1).
View Article and Find Full Text PDFThis work constitutes a part of a wider study examining the degradation and release of plant DNA into the environment. Microcosm studies investigated the kinetics of leaf and DNA content degradation in a specific variety of tomato (Admiro) after incubation in sediments over 30 days at 20, 10, and 4 degrees C. Temperature and microorganisms have been found to play a key role in the decomposition of plant material in freshwater sediment.
View Article and Find Full Text PDFThe aims of this study was to investigate the persistence and the growth of culturable bacterial indicators (CBI) including total coliforms (TC) and faecal coliforms represented by Escherichia coli, enterococcus (ENT), and aerobic mesophilic bacteria (AMB) in the surface sediments and the water column of Vidy Bay (Lake Geneva, City of Lausanne, Switzerland). The study was carried out for 60 d using microcosms containing Sewage Treatment Plant (STP) effluent and nonsterile water without CBI, as well as contaminated and non-contaminated sediments. The effects of water temperature and of organic matter associated with sediments on the survival of CBI in the sediments and the water column were observed.
View Article and Find Full Text PDFDNA, as the signature of life, has been extensively studied in a wide range of environments. While DNA analysis has become central to work on natural gene exchange, forensic analyses, soil bioremediation, genetically modified organisms, exobiology, and palaeontology, fundamental questions about DNA resistance to degradation remain. This paper investigated on the presence of plant DNA in groundwater and artesian fountain (groundwater-fed) samples, which relates to the movement and persistence of DNA in the environment.
View Article and Find Full Text PDFThe origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet.
View Article and Find Full Text PDFUnderstanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-year culture of the transgenic Bt176 corn, which has a blaTEM marker gene, could have had on the soil bacterial community. The bla gene encoding resistance to ampicillin belongs to the beta-lactam antibiotic family, which is widely used in medicine but is readily compromised by bacterial antibiotic resistance.
View Article and Find Full Text PDFIn 2001, the municipality of Lausanne extended the outlet pipe of the sewage treatment plant into the Bay of Vidy (Lake Geneva, Switzerland) as a measure to reduce bacterial water pollution and sediment contamination close to the lake beaches. The aim of the present study was to assess the impact of this measure. Lake bottom sediments were collected and analyzed for grain size, organic matter, organic carbon, nitrogen, phosphorus, heavy metals and hydrophobic organic compounds to evaluate their concentration and spatial distribution.
View Article and Find Full Text PDFMulti-tracer tests with three types of marine bacteriophages (H4/4, H6/1, and H40/1), together with various limnological methods, including physicochemical depth profiling, surface drifters, deep current measurements, and fecal indicator bacteria analyses, have been applied to characterize water circulation and pathogen transport in the Bay of Vidy (Lake Geneva, Switzerland). The experimental program was carried out twice, first in November 2005, when the lake was stratified, and a second time during holomixis in February 2006. The bacteriophages were injected at three points at different depths, where contaminated waters enter the lake, including the outlet pipe of a wastewater treatment plant, a river, and a stormwater outlet.
View Article and Find Full Text PDFLittle information is available on the process of DNA release from plants and neither is there much information to be found regarding DNA transport in the vadose zone. Unsaturated soil columns were used to examine the release and transport of DNA content in the leaf of tomato variety Palmiro, which was introduced into the soil columns after being dried at 35 degrees C for 3 days. Soil columns were leached with sterile water at a rate of 0.
View Article and Find Full Text PDFThis laboratory study investigated the kinetics of leaf and DNA content decomposition in two varieties of tomato (Palmiro and Admiro) after incubation in soil for 35 days. Results revealed that the decrease of dry matter in leaves in both varieties did not follow a single exponential function and was better described by a double exponential model. Composite half-decrease times were 3.
View Article and Find Full Text PDF