Over the past decade, boldine, a naturally occurring alkaloid found in several plant species including the Chilean Boldo tree, has garnered attention for its efficacy in rodent models of human disease. Some of the properties that have been attributed to boldine include antioxidant activities, neuroprotective and analgesic actions, hepatoprotective effects, anti-inflammatory actions, cardioprotective effects and anticancer potential. Compelling data now indicates that boldine blocks connexin (Cx) hemichannels (HCs) and that many if not all of its effects in rodent models of injury and disease are due to CxHC blockade.
View Article and Find Full Text PDFA growing body of research has provided evidence that de novo expression of connexin hemichannels and upregulation of pannexin hemichannels (Cx HCs and Panx HCs, respectively) in the cytoplasmic membrane of skeletal muscle (sarcolemma) are critical steps in the pathogenesis of muscle dysfunction of many genetic and acquired muscle diseases. This review provides an overview of the current understanding of the molecular mechanisms regulating the expression of Cx and Panx HCs in skeletal muscle, as well as their roles in both muscle physiology and pathologies. Additionally, it addresses existing gaps in knowledge and outlines future challenges in the field.
View Article and Find Full Text PDFMembrane channels such as those formed by connexins (Cx) and P2X receptors (P2XR) are permeable to calcium ions and other small molecules such as adenosine triphosphate (ATP) and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx and Panx1 hemichannels (HCs).
View Article and Find Full Text PDFIndividuals with diabetes mellitus present a skeletal muscle myopathy characterized by atrophy. However, the mechanism underlying this muscular alteration remains elusive, which makes it difficult to design a rational treatment that could avoid the negative consequences in muscles due to diabetes. In the present work, the atrophy of skeletal myofibers from streptozotocin-induced diabetic rats was prevented with boldine, suggesting that non-selective channels inhibited by this alkaloid are involved in this process, as has previously shown for other muscular pathologies.
View Article and Find Full Text PDFMembrane channels such as connexins (Cx), pannexins (Panx) and P2X receptors (P2X R) are permeable to calcium ions and other small molecules such as ATP and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx hemichannels (HC) and Panx.
View Article and Find Full Text PDFMuscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle muscular dystrophy.
View Article and Find Full Text PDFThe masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules.
View Article and Find Full Text PDF